单选题(2013)微分方程xy′-ylny=0满足y(1)=e的特解是:()Ay=exBy=exCy=e2xDy=lnx
单选题
(2013)微分方程xy′-ylny=0满足y(1)=e的特解是:()
A
y=ex
B
y=ex
C
y=e2x
D
y=lnx
参考解析
解析:
暂无解析
相关考题:
微分方程cosydx+(1+e-x)sinydy=0满足初始条件y x=0=的特解是:(A)cosy=(1+ex) (B)cosy=(1+ex) (C)cosy=4(1+ex) (D)cos2y=(1+ex)
微分方程cosydx+(1+e-x)sinydy=0满足初始条件y x=0=π/3的特解是:A. cosy=(1/4) (1+ex) B. cosy=1+exC. cosy=4(1+ex) D. cos2y=1+ex
曲线通过(1,1)点,且此曲线在[1,x]上所形成的曲边梯形面积的值等于该曲线终点的横坐标x与纵坐标y之比的二倍减去2,其中x1,y0。曲线y=f(x)所满足的微分方程应是:()A、y3=2(y-xy′)B、2xy′=2yC、2xy′=-y3D、2xy=2y+y3
单选题微分方程cosydx+(1+e-x)sinydy=0满足初始条件y|x=0=π/3的特解是( )。Acosy=(1+ex)/4Bcosy=1+exCcosy=4(1+ex)Dcos2y=1+ex
填空题微分方程y′=ex+y满足条件y(0)=0的特解为____。