微分方程xy'-ylny=0满足y(1)=1的特解是:A.y=exB.y=exC.y=e2xD.y=lnx
微分方程xy'-ylny=0满足y(1)=1的特解是:
A.y=ex
B.y=ex
C.y=e2x
D.y=lnx
B.y=ex
C.y=e2x
D.y=lnx
参考解析
解析:
相关考题:
已知微分方程y'+p(x)y = q(x)[q(x)≠0]有两个不同的特解y1(x), y2(x),C为任意常数,则该微分方程的通解是:A.y=C(y1-y2)B. y=C(y1+y2)C. y=y1+C(y1+y2)D. y=y1+C(y1-y2)
微分方程cosydx+(1+e-x)sinydy=0满足初始条件y x=0=的特解是:(A)cosy=(1+ex) (B)cosy=(1+ex) (C)cosy=4(1+ex) (D)cos2y=(1+ex)
微分方程cosydx+(1+e-x)sinydy=0满足初始条件y x=0=π/3的特解是:A. cosy=(1/4) (1+ex) B. cosy=1+exC. cosy=4(1+ex) D. cos2y=1+ex
曲线通过(1,1)点,且此曲线在[1,x]上所形成的曲边梯形面积的值等于该曲线终点的横坐标x与纵坐标y之比的二倍减去2,其中x1,y0。曲线y=f(x)所满足的微分方程应是:()A、y3=2(y-xy′)B、2xy′=2yC、2xy′=-y3D、2xy=2y+y3
单选题(2012)已知微分方程y′+p+(x)y=q(x)[q(x)≠0]有两个不同的特解y1(x),y2(x),则该微分方程的通解是:(c为任意常数)()Ay=c(y1-y2)By=c(y1+y2)Cy=y1+c(y1+y2)Dy=y1+c(y1-y2)
单选题微分方程cosydx+(1+e-x)sinydy=0满足初始条件y|x=0=π/3的特解是( )。Acosy=(1+ex)/4Bcosy=1+exCcosy=4(1+ex)Dcos2y=1+ex
单选题曲线通过(1,1)点,且此曲线在[1,x]上所形成的曲边梯形面积的值等于该曲线终点的横坐标x与纵坐标y之比的二倍减去2,其中x1,y0。曲线y=f(x)所满足的微分方程应是:()Ay3=2(y-xy′)B2xy′=2yC2xy′=-y3D2xy=2y+y3
填空题微分方程y′=ex+y满足条件y(0)=0的特解为____。