问答题设二阶线性微分方程y″+P(x)y′+Q(x)y=f(x)的三个特解是y1=x,y2=ex,y3=e2x,试求此方程满足条件y(0)=1,y′(0)=3的特解。

问答题
设二阶线性微分方程y″+P(x)y′+Q(x)y=f(x)的三个特解是y1=x,y2=ex,y3=e2x,试求此方程满足条件y(0)=1,y′(0)=3的特解。

参考解析

解析: 暂无解析

相关考题:

微分方程y''+ay'2=0满足条件y x=0=0,y' x=0=-1的特解是:

已知y1(x)和y2(x)是方程y''+p(x)y'+Q(x)y=0的两个线性无关的特解, Y1(x)和Y2 (x)分别是方程y''+p(x)y'+Q(x)y=R1(x)和y''+p(x)y'+Q(x)y=R2(x)的特解。那么方程y''+p(x)y'+Q(x)y=R1(x)y+R2(x)的通解应是:A. c1y1+c2y2B. c1Y1(x)+c2Y2(x) C. c1y1+c2y2+Y1(x) D. c1y1+c2y2+Y1(x)+Y2(x)

设函数y(x)是微分方程满足条件y(0)=0的特解.  (Ⅰ)求y(x);  (Ⅱ)求曲线y=y(x)的凹凸区间及拐点.

设非齐次线性微分方程y+P(x)y=Q(x)有两个不同的解析:y1(x)与y2(x),C为任意常数,则该方程的通解是( ).A.C[(y1(x)-y2(x)]B.y1(x)+C[(y1(x)-y2(x)]C.C[(y1(x)+y2(x)]D.y1(x)+C[(y1(x)+y2(x)]

已知微分方程y'+p(x)y=q(x)[q(x)≠0]有两个不同的特解:y1(x),y2(x),则该微分方程的通解是:(c为任意常数) A.y=c(y1-y2)B.y=c(y1+y2)C.y=y1+c(y1+y2)D. y=y1+c(y1-y2)

以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是:A. y''-2y'-3y=0B. y''+2y'-3y=0C. y''-3y'+2y=0D. y''+2y'+y=0

设非齐次线性微分方程y′+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程通解是( )。A.C[y1(x)-y2(x)]B.y1(x)+C[y1(x)-y2(x)]C.C[y1(x)+y2(x)]D.y1(x)+C[y1(x)+y2(x)]

已知y1(X)与y2(x)是方程:y" + P(x)y'+Q(x)y = 0的两个线性无关的特解,y1(x)和y2(x)分别是方程y"+P(x)y'+Q(x)y=R1(x)和y"+p(x)+Q(x)y=R2(x)的特解。那么方程y"+p(x)y'+Q(x)y=R1(x)+R2(x)的通解应是:A. c1y1+c2y2B. c1Y1(x) +c2Y2 (x)C. c1y1+c2y2 +Y1(x)D. c1y1+c2y2 +Y1 (x) +Y2 (x)

单选题(2012)已知微分方程y′+p+(x)y=q(x)[q(x)≠0]有两个不同的特解y1(x),y2(x),则该微分方程的通解是:(c为任意常数)()Ay=c(y1-y2)By=c(y1+y2)Cy=y1+c(y1+y2)Dy=y1+c(y1-y2)

单选题设函数y1,y2,y3都是线性非齐次方程y″+p(x)y′+q(x)y=f(x)的不相等的特解,则函数y=(1-c1-c2)y1+c1y2+c2y3(  )。(c1,c2为任意常数)A是所给方程的通解B不是方程的解C是所给方程的特解D可能是方程的通解,但一定不是其特解

单选题具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性方程是(  )。Ay‴-y″-y′+y=0By‴+y″-y′-y=0Cy‴-6y″+11y′-6y=0Dy‴-2y″-y′+2y=0

问答题设y1=x,y2=x+e2x,y3=x(1+e2x)是二阶常系数线性非齐次方程的特解,求该方程及其通解。

单选题以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是(  )。[2012年真题]Ay″-2y′-3y=0By″+2y′-3y=0Cy″-3y′+2y=0Dy″-2y′-3y=0

单选题(2012)以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是:()Ay″-2y′-3y=0By″+2y′-3y=0Cy″-3y′+2y=0Dy″+2y′+y=0

填空题设y1=3+x2,y2=3+x2+e-x是某二阶线性非齐次微分方程的两个特解,且相应的齐次方程有一个解为y3=x,则该方程的通解为____。

单选题已知y1(x)与y2(x)是方程y″+P(x)y′+Q(x)y=0的两个线性无关的特解,Y1(x)和Y2(x)分别是是方程y″+P(x)y′+Q(x)y=R1(x)和y″+P(x)y′+Q(x)y=R2(x)的特解。那么方程y″+P(x)y′+Q(x)y=R1(x)+R2(x)的通解应是:()Ac1y1+c2y2Bc1Y1(x)+c2Y2(x)Cc1y1+c2y2+Y1(x)Dc1y1+c2y2+Y1(x)+Y2(x)

单选题设非齐次线性微分方程y′+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是(  )。AC[y1(x)-y2(x)]By1(x)+C[y1(x)-y2(x)]CC[y1(x)+y2(x)]Dy1(x)+C[y1(x)+y2(x)]