设函数y(x)是微分方程满足条件y(0)=0的特解.  (Ⅰ)求y(x);  (Ⅱ)求曲线y=y(x)的凹凸区间及拐点.

设函数y(x)是微分方程满足条件y(0)=0的特解.
  (Ⅰ)求y(x);
  (Ⅱ)求曲线y=y(x)的凹凸区间及拐点.


参考解析

解析:

相关考题:

设曲线y=y(x)上点P(0,4)处的切线垂直于直线x-2y+5=0,且该点满足微分方程y″+2y′+y=0,则此曲线方程为( )。A.B.C.D.

微分方程xy'— ylny=0满足y(1)=e的特解是:A. y=exB. y=exC.y=e2xD. y=lnx

设f(x)是二阶常系数非齐次线性微分方程y″+py′+qy=sin2x+2ex的满足初始条件f(0)=f′(0)=0的特解,则当x→0时,A.不存在B.等于0C.等于1D.其他

微分方程cosydx+(1+e-x)sinydy=0满足初始条件y x=0=的特解是:(A)cosy=(1+ex) (B)cosy=(1+ex) (C)cosy=4(1+ex) (D)cos2y=(1+ex)

微分方程y''+ay'2=0满足条件y x=0=0,y' x=0=-1的特解是:

微分方程y-y=0满足y(0)=2的特解是(  )。

微分方程cosydx+(1+e-x)sinydy=0满足初始条件y x=0=π/3的特解是:A. cosy=(1/4) (1+ex) B. cosy=1+exC. cosy=4(1+ex) D. cos2y=1+ex

微分方程y"-6y'+ 9y=0,在初始条件y' x=0=2,y x=0=0下的特解为:A. (1/2)xe2x+c B. (1/2)xe3x+cC. 2x D. 2xe3x

微分方程2yy'-y^2-2=0满足条件y(0)=1的特解y=_________.请作答(1)

微分方程xy'+y=0满足条件y(1)=1的解是y=________.

若二阶常系数线性齐次微分方程y"+ay'+by=0的通解为y=(C1+C2x)e^x,则非齐次方程y"+ay'+by=x满足条件y(0)=2,y'(0)=0的解为y=________.

微分方程满足条件y(0)=0的解为y=________.

微分方程cosydx+(1+e-x)sinydy=0满足初始条件y x=0=π/3的特解是( )。

微分方程y''-6y'+9y=0在初始条件下的特解为( )

设y=f(x)是微分方程y"-2y’+4y=0的一个解,又f(x0)O,f’(x0)=0,则函数f(x)在点x0().A、取得极大值B、取得极小值C、的某个邻域内单调增加D、的某个邻域内单调减少

填空题若二阶常系数线性齐次微分方程y″+ay′+by=0的通解为y=(C1+C2x)ex,则非齐次方程y″+ay′+by=x满足条件y(0)=2,y′(0)=0的解为y=____。

单选题函数(C1,C2为任意数)是微分方程y″-y′-2y=0的(  )。[2014年真题]A通解B特解C不是解D解,既不是通解又不是特解

单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。Af″(x)+f(x)=0Bf′(x)+f(x)=0Cf″(x)+f′(x)=0Df″(x)+f′(x)+f(x)=0

单选题微分方程xy′-ylny=0满足y(1)=e的特解是(  )。[2013年真题]Ay=exBy=exCy=e2xDy=ln x

单选题微分方程cosydx+(1+e-x)sinydy=0满足初始条件y|x=0=π/3的特解是(  )。Acosy=(1+ex)/4Bcosy=1+exCcosy=4(1+ex)Dcos2y=1+ex

问答题设二阶线性微分方程y″+P(x)y′+Q(x)y=f(x)的三个特解是y1=x,y2=ex,y3=e2x,试求此方程满足条件y(0)=1,y′(0)=3的特解。

单选题设z=φ(x2-y2),其中φ有连续导数,则函数z满足(  )。Ax∂z/∂x+y∂z/∂y=0Bx∂z/∂x-y∂z/∂y=0Cy∂z/∂x+x∂z/∂y=0Dy∂z/∂x-x∂z/∂y=0

单选题(2012)以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是:()Ay″-2y′-3y=0By″+2y′-3y=0Cy″-3y′+2y=0Dy″+2y′+y=0

单选题函数y1(x)、y2(x)是微分方程y′+p(x)y=0的两个不同特解,则该方程的通解为(  )。Ay=c1y1+c2y2By=y1+cy2Cy=y1+c(y1+y2)Dy=c(y1-y2)

单选题微分方程y′=ex+y满足条件y(0)=0的特解为(  )。Aex+e-y=1Bex+e-y=2Cex+e-y=3Dex+e-y=4

填空题微分方程y′=ex+y满足条件y(0)=0的特解为____。

单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。Af′(x)+f(x)=0Bf′(x)-f(x)=0Cf″(x)+f(x)=0Df″(x)-f(x)=0