设A,B均为n阶矩阵,(I一B)可逆,则矩阵方程A+BX=X的解X=()。
设A,B均为n阶可逆矩阵,求证:(AB)*=B*A*。
设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于( )。A.-A.*B.A.*C.(-1)nA.*D.(-1)n-1A.*
设n阶矩阵A与对角矩阵相似,则().A.A的n个特征值都是单值B.A是可逆矩阵C.A存在n个线性无关的特征向量D.A一定为n阶实对称矩阵
设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵B.实对称矩阵C.正定矩阵D.正交矩阵
设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则
设A、B都是n阶可逆矩阵,且(AB)2=I,则(BA)2的值为( )。
设A1,A2分别为m阶,n阶可逆矩阵,分块矩阵.证明:A可逆,且
设n阶实对称矩阵A的秩为r,且满足,求 ①二次型的标准形; ②行列式的值,其中E为单位矩阵
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B. (1)证明B可逆; (2)求AB^-1.
设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B, (1)证明B可逆; (2)求.
设A,B都是n阶矩阵,AB+E可逆.证明BA+E也可逆,并且.
设A是n阶矩阵,E+A是可逆矩阵,记,若A按足条件,证明是反对称矩阵。
设A,B为三阶矩阵,且满足方程.若矩阵,求矩阵B.
设A为n阶非零矩阵,E为n阶单位矩阵,若A^3=O,则 A.AE-A不可逆,E+A不可逆B.E-A不可逆,E+A可逆C.E-A可逆,E+A可逆D.E-A可逆,E+A不可逆
设A是3阶矩阵,P=(a1,a2,a3)是3阶可逆矩阵,且P-1AP=
设A为3阶矩阵.P为3阶可逆矩阵,且A.B.C.D.
设A为n阶非零矩阵,E为n阶单位矩阵。若A3=0,则( )。A.E-A不可逆,E+A不可逆B.E—A不可逆。E+A可逆C.E—A可逆。E+A可逆D.E—A可逆。E十A不可逆
设A是3阶矩阵,P = (α1,α2,α3)是3阶可逆矩阵,且,若矩阵Q=(α2,α1,α3),则Q-1AQ=( )。
设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)n等于( )。A. -An B. An C. (-1)nAn D. (-1)n-1An
设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。A、-A*B、A*C、(-1)nA*D、(-1)n-1A*
单选题设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。A-A*BA*C(-1)nA*D(-1)n-1A*