设A,B为三阶矩阵,且特征值均为-2,1,1,以下命题: (1)A~B;(2)A,B合同;(3)A,B等价;(4)|A|=|B|中正确的命题个数为().A.1个B.2个C.3个D.4个
设A,B为三阶矩阵,且特征值均为-2,1,1,以下命题:
(1)A~B;(2)A,B合同;(3)A,B等价;(4)|A|=|B|中正确的命题个数为().
(1)A~B;(2)A,B合同;(3)A,B等价;(4)|A|=|B|中正确的命题个数为().
A.1个
B.2个
C.3个
D.4个
B.2个
C.3个
D.4个
参考解析
解析:因为A,B的特征值为-2,1,1,所以|A|=|B|=-2,又因为r(A)=r(B)=3,所以A,B等价,但A,B不一定相似或合同,选(B).
相关考题:
设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().A.矩阵A不可逆B.矩阵A的迹为零C.特征值-1,1对应的特征向量正交D.方程组AX=0的基础解系含有一个线性无关的解向量
单选题设A、B均为三阶方阵,且行列式|A|=1,|B|=-2,AT为A的转置矩阵,则行列式|-2ATB-1|=( )。[2018年真题]A-1B1C-4D4