设A为n阶矩阵,且|A|=0,则A().A.必有一列元素全为零B.必有两行元素对应成比例C.必有一列是其余列向量的线性组合D.任一列都是其余列向量的线性组合

设A为n阶矩阵,且|A|=0,则A().

A.必有一列元素全为零
B.必有两行元素对应成比例
C.必有一列是其余列向量的线性组合
D.任一列都是其余列向量的线性组合

参考解析

解析:因为|A|=0,所以r(A)小于n,从而A的n个列向量线性相关,于是其列向量中至少有一个向量可由其余向量线性表示,选(C).

相关考题:

设A为n阶矩阵,k为常数,则(kA)+等于().

设A,B为n阶可逆矩阵,则().

设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().A.r>mB.r=mC.rD.r≥m

设A,B都是,n阶矩阵,其中B是非零矩阵,且AB=O,则().A.r(B)=nB.r(B)C.A2-Bz=(A+B)(A-B)D.|A|=0

设A是n阶矩阵,且Ak=O(k为正整数),则( )。A.A一定是零矩阵B.A有不为0的特征值C.A的特征值全为0D.A有n个线性无关的特征向量

设A,B是n阶矩阵,且B≠0,满足AB=0,则以下选项中错误的是:

设A、B都是n阶可逆矩阵,且(AB)2=I,则(BA)2的值为( )。

设A为n阶矩阵,且|A|=0,≠0,则AX=0的通解为_______.

设A是m×s阶矩阵,.B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.

设A为三阶矩阵,且|A|=4,则=_______.

设A=图},B≠0为三阶矩阵,且BA=0,则r(B)=_______.{

设,B为三阶非零矩阵,且AB=0,则t=________.

设A为n阶矩阵,A的各行元素之和为0且r(A)=n-1,则方程组AX=0的通解为_______.

设A,B为n阶矩阵,且r(A)+r(B)

设 都是n(n≥3)阶非零矩阵,且AB=O,则r(B)=( )A. 0B.1C. 2D. 3

设a为N阶可逆矩阵,则( ).《》( )

设A为n阶方阵,且|A|=a≠0,则|A*|等于()。A、aB、an-1C、an

填空题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=____。

填空题设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=____。

填空题设,B为三阶非零矩阵,且AB=0,则t=____。

单选题设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=(  )。A0B1C2D3

单选题已知A为奇数阶实矩阵,设阶数为n,且对于任一n维列向量X,均有XTAX=0,则有(  )。A|A|>0B|A|=0C|A|<0D以上三种都有可能

填空题设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=____.

单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=(  )。A-2B-1C0D1

单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=(  )。A4B2C-1D1

填空题设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX(→)=0(→)的通解为____。

填空题A、B都是n阶矩阵,且A≠0,AB=0,则|B|=____。

单选题设A为n阶方阵,且|A|=a≠0,则|A*|等于()。AaBan-1Can