设,B为三阶非零矩阵,且AB=0,则t=________.
设,B为三阶非零矩阵,且AB=0,则t=________.
参考解析
解析:由AB=0,对B按列分块有AB=A(β1,β2,β3)=(Aβ1,Aβ2,Aβ3)=(0,0,0),即β1,β2,β3是齐次方程组Ax=0的解,又因B≠0,故Ax=0有非零解,那么若熟悉公式:AB=0,则r(A)+r(B)≤n.可知r(A)<3.亦可求出t=-3.
【评注】对于AB=O要有B的每个列向量都是齐次方程组Ax=0的构思,还要有秩r(A)+r(B)≤n的知识.
【评注】对于AB=O要有B的每个列向量都是齐次方程组Ax=0的构思,还要有秩r(A)+r(B)≤n的知识.
相关考题:
设A、B、C均为n阶矩阵,则下列结论或等式成立的是()。 A、(AB)^2=A^2B^2B、若AB=AC且A≠0,则B=CC、((A+B)C)^T=C^T(B^T+A^T)D、若A≠0且B≠0,则AB≠0
单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=( )。A-2B-1C0D1
单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=( )。A4B2C-1D1
单选题设A,B都是n阶非零矩阵,且AB=0,则A和B的秩( )。A必有一个等于零B都等于nC一个小于n,一个等于nD都小于n