单选题已知A为奇数阶实矩阵,设阶数为n,且对于任一n维列向量X,均有XTAX=0,则有(  )。A|A|>0B|A|=0C|A|<0D以上三种都有可能

单选题
已知A为奇数阶实矩阵,设阶数为n,且对于任一n维列向量X,均有XTAX=0,则有(  )。
A

|A|>0

B

|A|=0

C

|A|<0

D

以上三种都有可能


参考解析

解析:
由于对任一n维列向量X均有XTAX=0,两边转置,有XTATX=0,从而XT(A+AT)X=0。显然有(A+ATT=A+AT,即A+AT为对称矩阵。从而对任一n维列向量X均有:XT(A+AT)X=0,A+AT为实对称矩阵,从而有A+AT=0。即AT=-A,从而A为实反对称矩阵,且A为奇数阶,故|A|=0。

相关考题:

设A为m*n矩阵,则有()。 A、若mn,则有ax=b无穷多解B、若mn,则有ax=0非零解,且基础解系含有n-m个线性无关解向量;C、若A有n阶子式不为零,则Ax=b有唯一解;D、若A有n阶子式不为零,则Ax=0仅有零解。

设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则() A、A=0B、A=EC、r(A)=nD、0r(A)(n)

设A为m*n阶矩阵,其列向量为线性无关的,如果||.||是实空间中范数N(x)=||Ax||便是Rn中的一种范数。() 此题为判断题(对,错)。

设A是n阶方阵,a是n维列向量,下列运算无意义的是( ).A.B.C.αAD.Aα

设A为n阶矩阵,且|A|=0,则A().A.必有一列元素全为零B.必有两行元素对应成比例C.必有一列是其余列向量的线性组合D.任一列都是其余列向量的线性组合

设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β使得A=αβT.

设A为n阶矩阵,且|A|=0,≠0,则AX=0的通解为_______.

设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,

设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.

设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,

设A为n阶矩阵,A的各行元素之和为0且r(A)=n-1,则方程组AX=0的通解为_______.

设α1,α2,…,αn为n个线性无关的n维列向量,且与向量β正交.证明:向量β为零向量.

设A为m×n阶实矩阵,且r(A)=n.证明:A^TA的特征值全大于零.

设A为n阶方阵,且|A|=a≠0,则|A*|等于()。A、aB、an-1C、an

设A是n阶方阵,n≥3.已知|A|=0,则下列命题正确的是().A、A中某一行元素全为0B、A的第n行是前n-1行(作为行向量)的线性组合C、A中有两列对应元素成比例D、A中某一列是其余n-1列(作为列向量)的线性组合

设A是n阶方阵,α是n维列向量,下列运算无意义的是().A、αTAαB、ααTC、αAD、Aα

填空题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=____。

单选题设n维行向量α=(1/2,0,…,0,1/2),矩阵A=E-αTα,B=E+2αTα,其中E为n阶单位矩阵,则AB等于(  )。AOB-ECEDE+αTα

单选题设A是n阶矩阵,若|A|=0,则(  )成立。AA的任一列向量是其余列向量的线性组合B必有一列向量是其余向量的线性组合C必有两列元素对应成比例D必有一列元素全为0

单选题设A是n阶方阵,α是n维列向量,下列运算无意义的是().AαTAαBααTCαADAα

单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=(  )。A-2B-1C0D1

单选题设A是n阶方阵,n≥3.已知|A|=0,则下列命题正确的是().AA中某一行元素全为0BA的第n行是前n-1行(作为行向量)的线性组合CA中有两列对应元素成比例DA中某一列是其余n-1列(作为列向量)的线性组合

单选题设A是n阶矩阵,若|A|=0,则(  )成立.AA的任一列向量是其余列向量的线性组合B必有一列向量是其余向量的线性组合C必有两列元素对应成比例D必有一列元素全为O

单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=(  )。A4B2C-1D1

问答题设A为n阶方阵,若对任意n维向量x(→)=(x1,x2,…,xn)T都有Ax(→)=0。证明:A=0。

问答题设A为n阶方阵,若对任意n维向量X=(x1,x2,…,xn)T都有AX=0.证明:A=0.

单选题设A为n阶方阵,且|A|=a≠0,则|A*|等于()。AaBan-1Can