设A是m×s阶矩阵,.B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.

设A是m×s阶矩阵,.B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.


参考解析

解析:

相关考题:

若A是m×n矩阵,且m≠n,则当R(A)=n时,齐次线性方程组AX=0只有零解

设A是m×N阶矩阵,B是n×m阶矩阵,则().A.当m>n时,线性齐次方程组ABX=0有非零解B.当m>n时,线性齐次方程组ABX=0只有零解C.当n>m时,线性齐次方程组ABX=0有非零解D.当n>m时,线性齐次方程组ABX=0只有零解

设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是(). A.r(A)=mB.r(A)=NC.A为可逆矩阵D.r(A)=b且b可由A的列向量组线性表示

设有方程组AX=O与BX=0,其中A,B都是m×N阶矩阵,下列四个命题:  (1)若AX=O的解都是BX=O的解,则r(A)≥r(B)  (2)若r(A)≥r(B),则AX=0的解都是BX=0的解  (3)若AX=0与BX=0同解,则r(A)-r(B)  (4)若r(A)=r(B),则AX=0与BX=0同解  以上命题正确的是().A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)

设A,B都是N阶矩阵,且存在可逆矩阵P,使得AP=B,则().A.A,B合同B.A,B相似C.方程组AX=0与BX=0同解D.r(A)=r(B)

设A是m×n阶矩阵,则下列命题正确的是().A.若mB.若m>n,则方程组AX=b一定有唯一解C.若r(A)=n,则方程组AX=b一定有唯一解D.若r(A)=m,则方程组AX=b一定有解

设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().A.r>mB.r=mC.rD.r≥m

设A是m×n阶矩阵,下列命题正确的是().A.若方程组AX=0只有零解,则方程组AX=b有唯一解B.若方程组AX=0有非零解,则方程组AX=b有无穷多个解C.若方程组AX=b无解,则方程组AX=0一定有非零解D.若方程组AX=b有无穷多个解,则方程组AX=0一定有非零解

设A是n阶矩阵,下列结论正确的是().A.A,=B都不可逆的充分必要条件是AB不可逆B.r(A)}C.AX==与BX=0同解的充分必要条件是r(A)=r(B)D.A~B的充分必要条件是λE-A~λE-B

设A是m×s阶矩阵,B为s×n阶矩阵,则方程组BX=O与ABX=O同解的充分条件是().A.r(A)=sB.r(A)=mC.r(B)=sD.r(B)=n

设A是m×n矩阵,B是n×m矩阵,且AB=E,其中E为m阶单位矩阵,则( )A.r(A)=r(B)=mB.r(A)=m r(B)=nC.r(A)=n r(B)=mD.r(A)=r(B)=n

设A,B是n阶矩阵,且B≠0,满足AB=0,则以下选项中错误的是:A.r(A)+r(B)≤n B. A =0 或 B =0 C. 0≤r(A)

已知3阶矩阵A的第一行是不全为零,矩阵 (k为常数),且AB=0, 求线性方程组Ax=0的通解

设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,

设A为n阶矩阵,A的各行元素之和为0且r(A)=n-1,则方程组AX=0的通解为_______.

设A,B分别为m×n及n×s阶矩阵,且AB=O.证明:r(A)+r(B)≤n,

设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r

设A=,E为三阶单位矩阵.  (Ⅰ)求方程组Ax=0的一个基础解系;  (Ⅱ)求满足AB=E的所有矩阵B.

设A为m X n矩阵,且r(A)=m小于n,则下列结论正确的是 AA的任意m阶子式都不等于零 BA的任意m个子向量线性无关 C方程组AX=b一定有无数个解 D矩阵A经过初等行变换化为

设A,B是n阶矩阵,且B≠0,满足AB=0,则以下选项中错误的是:A.r(A)+r(B)≤n B. A =0 或B =0C. 0≤r(D)

问答题设AX=0与BX=0均为n元齐次线性方程组,秩r(A)=r(B),且方程组AX=0的解均为方程组BX=0的解,证明方程组AX=0与BX=0同解.

问答题设A是n阶矩阵,若存在正整数k,使线性方程组Akx(→)=0(→)有解向量α,且Ak-1α(→)≠0(→),证明:向量组α(→),Aα(→),…,Ak-1α(→)是线性无关的。

单选题设A为3阶方阵,α(→)1,α(→)2,α(→)3是互不相同的3维列向量,且都不是方程组Ax(→)=0(→)的解,若B=(α(→)1,α(→)2,α(→)3)满足r(AB)<r(A),r(AB)<r(B),则r(AB)等于(  )。A3B2C1D0

单选题若A为m×n矩阵,B为n×m矩阵,则(  )。A当m>n时,ABX(→)=0(→)必有非零解B当m>n时,AB必可逆C当n>m时,ABX(→)=0(→)只有零解D当n>m时,必有r(AB)<m

单选题设矩阵Am×n的秩r(A)=m<n,Em为m阶单位矩阵,下述结论正确的是(  )。AA的任意m个列向量必线性无关BA的任一个m阶子式不等于0C非齐次线性方程组AX(→)=b(→)一定有无穷多组解DA通过行初等变换可化为(Em,0)