1、直接迭代法求方程f(x)=0的根时,首先要由方程f(x)=0直接推出迭代函数x=g(x),其几何意义就是求曲线y=g(x)和x轴的交点。
1、直接迭代法求方程f(x)=0的根时,首先要由方程f(x)=0直接推出迭代函数x=g(x),其几何意义就是求曲线y=g(x)和x轴的交点。
参考答案和解析
错误
相关考题:
设f1(x)和f2(x)为二阶常系数线性齐次微分方程y"+py'+q=0的两个特解, 若由f1(x)和f2(x)能构成该方程的通解,下列哪个方程是其充分条件?A.f1(x) *f'2(x)-f2(x)f'1(x)=0B.f1(x) * f’2(x)-f2(x) *f'1(x)≠0C.f1(x)f'2(x)+f2(x)*f'1(x) =0D.f1(x)f'2(x)+f2(x)*f'1(x) ≠0
已知二次函数f(x)的二次项系数为实数a,且其图像与直线2x+y=0交点横坐标为1和3. (1)若方程f(x)+6a=0有两个相等的实数根,求f(x)的解析式; (2)若f(x)的最大值为正数,求实数n的取值范围.
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上 A.A当f'(x)≥0时,f(x)≥g(x)B.当f'(x)≥0时,f(x)≤g(x)C.当f"(x)≥0时,f(x)≥g(x)D.当f"(x)≥0时,f(x)≤g(x)
已知曲线,其中函数f(t)具有连续导数,且f(0)=0,f'(t)>0(0).若曲线L的切线与x轴的交点到切点的距离恒为1,求函数f(t)的表达式,并求以曲线L及x轴和y轴为边界的区域的面积.
已知函数 (1)求f(x)单调区间与值域; (2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1]。若对于任意x1∈[0,1],总存在x0∈[0,1]使g(x0)=f(x1)成立,求a的取值范围。
用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=φ(x),则f(x)=0的根是()。A、y=φ(x)与x轴交点的横坐标B、y=x与y=φ(x)交点的横坐标C、y=x与x轴的交点的横坐标D、y=x与y=φ(x)的交点
设f1(x)和f2(x)为二阶常系数线性齐次微分方程y″+py′+g=0的两个特解,若由f1(x)和f2(x)能构成该方程的通解,下列哪个方程是其充分条件()?A、f1(x)·f′2(x)-f2(x)f′1(x)=0B、f1(x)·f′2(x)-f2(x)·f′1(x)≠0C、f1(x)f′2(x)+f2(x)·f′1(x)=0D、f1(x)f′2(x)+f2(x)f′1(x)≠0
单选题设f1(x)和f2(x)为二阶常系数线性齐次微分方程y″+py′+g=0的两个特解,若由f1(x)和f2(x)能构成该方程的通解,下列哪个方程是其充分条件()?Af1(x)·f′2(x)-f2(x)f′1(x)=0Bf1(x)·f′2(x)-f2(x)·f′1(x)≠0Cf1(x)f′2(x)+f2(x)·f′1(x)=0Df1(x)f′2(x)+f2(x)f′1(x)≠0
单选题若曲线C上点的坐标都是方程f(x,y)=0的解,则下列判断中正确的是( ).A曲线C的方程是f(x,y)=0B以方程f(x,y)=0的解为坐标的点都在曲线C上C方程f(x,y)=0的曲线是CD方程f(x,y)=0表示的曲线不一定是C
问答题设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。
单选题用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=φ(x),则f(x)=0的根是()。Ay=φ(x)与x轴交点的横坐标By=x与y=φ(x)交点的横坐标Cy=x与x轴的交点的横坐标Dy=x与y=φ(x)的交点