已知二次函数f(x)的二次项系数为实数a,且其图像与直线2x+y=0交点横坐标为1和3. (1)若方程f(x)+6a=0有两个相等的实数根,求f(x)的解析式; (2)若f(x)的最大值为正数,求实数n的取值范围.

已知二次函数f(x)的二次项系数为实数a,且其图像与直线2x+y=0交点横坐标为1和3.
(1)若方程f(x)+6a=0有两个相等的实数根,求f(x)的解析式;
(2)若f(x)的最大值为正数,求实数n的取值范围.


参考解析

解析:解:根据题意f(x)与2x+y=0的交点为(1,-2)、(3,-6),设f(x)=ax2+bx+c,将上述两个交点代入,有a+b+c=-2,9a+36+c=-6,整理可得b=-2-4a,c=3a.

相关考题:

若二次函数y=f(x)的图像过点(0,o),(-1,1)和(-2,o),则f(x)=__________.

二次函数y=x2+x-2的图像与.72轴的交点坐标为 ( )A.(2,0)和(1,0)B.(-2,0)和(1,0)C.(2,0)和(-1,0)D.(-2,0)和(-1,0)

已知函数f(x)=a2+k的图象经过点(1,7),且其反函数f-1(x)的图像经过点(4,0),则函数f(x)的表达式是 ( )A.f(x)=4x+3B.f(x)=2x+5C.f(x)=5x+2D.f(x)=3x+5

已知二次函数y1=x2-x-2和一次函数y2=x+1的两个交点分别为A(-1,0),B(3,4),当y1>y2时,自变量x的取值范围是( )A.x<-1或x>3 B.-1<x<3 C.x<-1 D.x>3

设随机变量X的密度函数为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对任意实数a有( )。A.B.C.F(-a)=F(a)D.F(-a)=2F(a)-1

设随机变量X的密度函数为f(x),且f(x)为偶函数,X的分布函数为F(x),则对任意实数a,有().

设X~N(μ,σ^2),其分布函数为F(x),对任意实数a,讨论F(-a)+F(a)与1的大小关系.

已知曲线,其中函数f(t)具有连续导数,且f(0)=0,f'(t)>0(0).若曲线L的切线与x轴的交点到切点的距离恒为1,求函数f(t)的表达式,并求以曲线L及x轴和y轴为边界的区域的面积.

A.f(x)为偶函数,值域为(-1,1)B.f(x)为奇函数,值域为(-∞,0)C.f(x)为奇函数,值域为(-1,1)D.f(x)为奇函数,值域为(0,+∞)

已知f(χ)是偶函数,且其图像与χ轴有4个交点,则方程f(χ)=0的所有实根之和为( )A.4B.2C.1D.0

已知直线在x轴上的截距为-1,在y轴上的截距为1,又抛物线y=x2+bx+c的顶点坐标为(2,-8),求直线和抛物线两个交点横坐标的平方和.

已知二次函数(x)=x2+bx+c的图像过点P(1,0),并且对于任意实数x,有(1+x)=(1-x),求函数(x)的最值.

已知函数(x)=ax2+b的图像经过点(1,2)且其反函数-1(x)的图像经过点(3,0),则函数(x)的解析式是( )A.B.(x)=-x2+3C.(x)=3x2+2D.(x)=x2+3

非负连续函数f(x)满足f(0)=0,f(1)=1.已知以曲线y=f(x)为曲边,以[0,x]为底的曲边梯形,其面积与f(x)的n+1次幂成正比,则f(x)的表达式为

若实值函数f定义域为全体实数,且满足任意x,y:f(x+y)=f(x)f(y)。此时,若f(8)=4,则有f(2)=( )。A. 0 D. 2

已知函数f(x)=lg(x+1)。 (1)若0(2)若g(x)9;g 2为周期的偶函数,且当0≤x≤1时,有g(x)=f(x),求函数y-=g(x)x∈[1,2])的反函数。

设随机变量x的密度函数为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对任意实数 a,有( )。

若f(x)为可导函数,且已知f(0) = 0,f'(0) = 2,则的值为()。A. 0 B. 1 C. 2 D.不存在

已知函数f(x)=∣2x-3∣+6,已知函数g(x)=kx+7,若f(x)与g(x)有且仅有一个交点,则k的值不可能为( )。

已知定义在实数集R上的偶函数?(x)在区间[0,+∞)上为单调增函数,若?(1)

用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=φ(x),则f(x)=0的根是()。A、y=φ(x)与x轴交点的横坐标B、y=x与y=φ(x)交点的横坐标C、y=x与x轴的交点的横坐标D、y=x与y=φ(x)的交点

已知一次函数的图像过点(3,5)与(-4,-9),则该函数的图像与y轴交点的坐标为(0,-1)。

填空题二次函数的图像与x轴交点横坐标为-2和1,且通过点(2,4),则其函数解析式为____.

填空题二次函数y=-x2+2x+n的图象与x轴的一个交点为(3,0),则n=____.

判断题已知一次函数的图像过点(3,5)与(-4,-9),则该函数的图像与y轴交点的坐标为(0,-1)。A对B错

填空题已知函数y=f(x)为偶函数,它的最小正周期是3.且f(-1)=7,则f(7)=____.

问答题设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。