设D为曲线y=1-x2,直线y=x+1及x轴所围成的平面区域(如图1-3—1所示)·①求平面图形的面积;②求平面图形D绕x轴旋转一周所成旋转体的体积Vx.

设D为曲线y=1-x2,直线y=x+1及x轴所围成的平面区域(如图1-3—1所示)·
①求平面图形的面积;
②求平面图形D绕x轴旋转一周所成旋转体的体积Vx.


参考解析

解析:

相关考题:

设(X,Y)服从在区域D上的均匀分布,其中D为x轴、y轴及x+y=1所围成,求X与Y的协方差Cov(X,Y).

设平面区域D由曲线y=1/x及直线y=0,x=1,x=е2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)的联合密度函数为()。

若D是由x轴、y轴及直线2x+y-2=0所围成的闭区域,则二重积分的值等于(  )A.1B.2C.1/2D.-1

由曲线y=ex,y=e-2x及直线x=-1所围成图形的面积是:

已知D为x轴、y轴和抛物线y=1-x2所围成的在第一象限内的闭区域,则

设抛物线y=1-x2与x轴的交点为A,B,在它们所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图1—2-2所示).设梯形上底CD长为2x,面积为S(x).图1一2—1图1—2—2①写出S(x)的表达式;②求S(x)的最大值.

设曲线y=4-x2(x≥0)与x轴,y轴及直线x=4所围成的平面图形为D(如图1—3—2中阴影部分所示).图1—3—1图1—3—2①求D的面积S;②求图中x轴上方的阴影部分绕y轴旋转一周所得旋转体的体积Vy.

已知曲线C为y=2x2及直线L为y=4x.①求由曲线C与直线L所围成的平面图形的面积S;②求曲线C的平行于直线L的切线方程.

在抛物线y=1-x2与x轴所围成的平面区域内作一内接矩形ABCD,其一边AB在x轴上(如图1-2-4所示).设AB=2x,矩形面积为S(x).图1—2—3图1—2—4①写出S(x)的表达式;②求S(x)的最大值.

由曲线y=x3,直线x=1,z轴围成的平面有界区域的面积为_________.

①求曲线y=ex及直线x=1,x=0,y=0所围成的图形D的面积S:②求平面图形D绕x轴旋转一周所成旋转体的体积Vx.

曲线y=1-x2与x轴所围成的平面图形的面积S=()·A.2B.4/3C.1D.2/3

求曲线y=x2与直线y=0,x=1所围成的平面图形绕x轴旋转一周所得旋转体的体积.

设D是由直线y=1,y=x,y=-x围成的有界区域,计算二重积分

设f(x,y)为连续函数,且满足,其中D是由x轴、y轴、所围成的闭区域

设非负函数满足微分方程,当曲线过原点时,其与直线x=1及y=0围成平面区域D的面积为2,求D绕y轴旋转所得旋转体的体积

设Ω是由平面x+y+z=1与三个坐标平面所围成的空间区域,则=_________.

设D是两个坐标轴和直线x+y=1所围成的三角形区域,则的值为:

设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为S(x).(1)写出S(x)的表达式;(2)求S(x)的最大值.

设区域D是由直线y=x,x=2,y=1围成的封闭平面图形,

,其中区域如图5-3所示,由y=x,y=1与Y轴围成.

求由曲线y=x2(x≥0),直线y=1及Y轴围成的平面图形的面积·

设l是曲线y=x2+3在点(1,4)处的切线,求由该曲线,切线l及Y轴围成的平面图形的面积S.

设D为曲线y=x2与直线y=x所围成的有界平面图形,求D绕x轴旋转一周所得旋转体的体积V.?

由曲线y=x2,直线y=a,x=0及x=1所围成的图形如图3—4中阴影部分所示,其中0≤a≤1.(1)求图中阴影部分的面积A.(2)问a为何值时,A的取值最小,并求出此最小值.

(1)求曲线Y=ex及直线x=1,x=0,y=0所围成的平面图形(如图3—3所示)的面积A.(2)求(1)中平面图形绕x轴旋转一周所得旋转体的体积Vx.

已知曲线y=ex与直线y=c(c>1)及Y轴所围成的平面图形的面积为1,求实数c的值。