已知曲线y=ex与直线y=c(c>1)及Y轴所围成的平面图形的面积为1,求实数c的值。

已知曲线y=ex与直线y=c(c>1)及Y轴所围成的平面图形的面积为1,求实数c的值。


参考解析

解析:

相关考题:

已知曲线C为y= 2x2,直线l为y= 4x.(10分)(1)求由曲线C与直线l所围成的平面图形的面积S;(2)求过曲线C且平行于直线l的切线方程.

求由曲线y=ex,y=e-x及x=1所围成的平面图形的面积以及此平面图形绕x轴旋转一周所成的旋转体的体积Vx.

求曲线y=2-x2和直线y=2x+2所围成图形面积.

由曲线和直线x=1,x=2,y= -1围成的图形,绕直线:y= -1旋转所得旋转体的体积为:

由曲线y=ex,y=e-2x及直线x=-1所围成图形的面积是:

由曲线y=lnx,y轴与直线y=lna,y=lnb(b>a>0)所围成的平面图形的面积等于(  )。 A. lnb-lna B. b-a C. e^b-e^a D. e^b+e^a

曲线y =-ex(x≥0)与直线x= 0,y = 0所围图形绕Ox轴旋转所得旋转体的体积为:A.π/2B.πC.π/3D.π/4

由抛物线y=x2与三直线x=a,x=a+1,y=0所围成的平面图形,a为下列(  )值时图形的面积最小。

求曲线y=,直线z=1和z轴所围成的有界平面图形的面积s,及该平面图形绕2轴旋转一周所得旋转体的体积V.

设曲线y=4-x2(x≥0)与x轴,y轴及直线x=4所围成的平面图形为D(如图1—3—2中阴影部分所示).图1—3—1图1—3—2①求D的面积S;②求图中x轴上方的阴影部分绕y轴旋转一周所得旋转体的体积Vy.

已知曲线C为y=2x2及直线L为y=4x.①求由曲线C与直线L所围成的平面图形的面积S;②求曲线C的平行于直线L的切线方程.

已知函数(x)=-x2+2x.①求曲线y=(x)与x轴所围成的平面图形面积S;②求①的平面图形绕x轴旋转一周所得旋转体体积Vx.

①求由曲线y=x,y=1/x,x=2与y=0所围成的平面图形的面积S;②求①中的平面图形绕x轴旋转一周所得旋转体的体积V.

曲线y=ex和直线y=1,x=1围成的图形面积等于()A.2-eB.e-2C.e-1D.e+1

设D为曲线y=1-x2,直线y=x+1及x轴所围成的平面区域(如图1-3—1所示)·①求平面图形的面积;②求平面图形D绕x轴旋转一周所成旋转体的体积Vx.

由曲线y=x3,直线x=1,z轴围成的平面有界区域的面积为_________.

①求曲线y=ex及直线x=1,x=0,y=0所围成的图形D的面积S:②求平面图形D绕x轴旋转一周所成旋转体的体积Vx.

求曲线y=x2与直线y=0,x=1所围成的平面图形绕x轴旋转一周所得旋转体的体积.

设非负函数满足微分方程,当曲线过原点时,其与直线x=1及y=0围成平面区域D的面积为2,求D绕y轴旋转所得旋转体的体积

(1)求直线y=1,曲线L以及y轴围成的平面图形绕y轴旋转一周所得到的的旋转体体积A;(2)假定曲线L绕y轴旋转一周所得到的旋转曲面为S。该旋转曲面作为容器盛满水(水的质量密度(单位体积水的重力)等于1),如果将其中的水抽完,求外力作功W.

求由曲线y2=(x-1)3和直线x=2所围成的图形绕x轴旋转所得的旋转体的体积.?

设曲线及x=0所围成的平面图形为D.(1)求平面图形D的面积s.(2)求平面图形D绕y轴旋转一周生成的旋转体体积V

求由曲线y=x2(x≥0),直线y=1及Y轴围成的平面图形的面积·

设l是曲线y=x2+3在点(1,4)处的切线,求由该曲线,切线l及Y轴围成的平面图形的面积S.

设D为曲线y=x2与直线y=x所围成的有界平面图形,求D绕x轴旋转一周所得旋转体的体积V.?

由曲线y=x2,直线y=a,x=0及x=1所围成的图形如图3—4中阴影部分所示,其中0≤a≤1.(1)求图中阴影部分的面积A.(2)问a为何值时,A的取值最小,并求出此最小值.

(1)求曲线Y=ex及直线x=1,x=0,y=0所围成的平面图形(如图3—3所示)的面积A.(2)求(1)中平面图形绕x轴旋转一周所得旋转体的体积Vx.