单选题设向量α1、α2、α3线性无关,向量β1可由αl、α2、α3线性表示,向量β2不能由α1、α2、α3线性表示,则对任意常数k必有(  ).Aα1、α2、α3、kβ1+β2线性无关Bα1、α2、α3、kβ1+β2线性相关Cα1、α2、α3、β1+kβ2线性元关Dα1、α2、α3、β1+kβ2线性相关

单选题
设向量α1、α2、α3线性无关,向量β1可由αl、α2、α3线性表示,向量β2不能由α1、α2、α3线性表示,则对任意常数k必有(  ).
A

α1、α2、α3、kβ12线性无关

B

α1、α2、α3、kβ12线性相关

C

α1、α2、α3、β1+kβ2线性元关

D

α1、α2、α3、β1+kβ2线性相关


参考解析

解析:
向量组α1,α2,α3,kβ12对任意常数k必线性无关;向量组α1,α2,α3,β1+kβ2,当k=0时,线性相关,当k≠0时,线性无关.

相关考题:

设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是()。 A、a1-a2,a2-a3,a3-a1B、a1,a2,a3+a1C、a1,a2,2a1-3a2D、a2,a3,2a2+a3

向量组a1=(1,-1,1),a2=(2,k,0),a3=(1,2,0)线性相关,则k=1。() 此题为判断题(对,错)。

设α1,α2,α3,α4 是三维实向量,则( )A. α1,α2,α3,α4一定线性无关 B. α1一定可由α2,α3,α4线性表出C. α1,α2,α3,α4一定线性相关 D. α1,α2,α3一定线性无关

已知向量组α1,α2,α3,α4线性无关,证明:α1+α2,α2+α3,α3+α4,α4-α1线性无关.

设α1,α2,α3均为三维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的 A.A必要非充分条件B.充分非必要条件C.充分必要条件D.既非充分也非必要条件

设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。A.若向量组I线性无关.则r≤SB.若向量组I线性相关,则r>sC.若向量组Ⅱ线性无关,则r≤sD.若向量组Ⅱ线性相关,则r>s

设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是()。A、β必可用α1,α2线性表示B、α1必可用α2,α3,β线性表示C、α1,α2,α3必线性无关D、α1,α2,α3必线性相关

3维向量组A:α1,α2,…,αM线性无关的充分必要条件是().A、对任意一组不全为0的数k1,k2,…,kM,都有后B、向量组A中任意两个向量都线性无关C、向量组A是正交向量组D、αM不能由线性表示

单选题已知向量组α1,α2,α3,α4线性无关,则(  ).Aα1+α2,α2+α3,α3+α4,α4+α1线性无关Bα1-α2,α2-α3,α3-α4,α4-α1线性无关Cα1+α2,α2+α3,α3+α4,α4-α1线性无关Dα1+α2,α2+α3,α3-α4,α4-α1线性无关

单选题n维向量组,α(→)1,α(→)2,…,α(→)s(3≤s≤n)线性无关的充要条件是(  )。A存在一组不全为0的数k1,k2,…,ks,使kα(→)1+k2α(→)2+…+ksα(→)s≠0(→)Bα(→)1,α(→)2,…,α(→)s中任意两个向量都线性无关Cα(→)1,α(→)2,…,α(→)s中存在一个向量不能由其余向量线性表示Dα(→)1,α(→)2,…,α(→)s中任何一个向量都不能由其余向量线性表示

单选题设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是(  )。[2012年真题]Aβ必可用α1,α2线性表示Bα1必可用α2,α3,β线性表示Cα1,α2,α3必线性无关Dα1,α2,α3必线性相关

单选题设有向量组α(→)1=(1,-1,1,0),α(→)2=(1,2,-1,0),α(→)3=(0,1,1,1),α(→)4=(2,2,1,1),则以下命题正确的是(  )。Aα(→)1线性相关Bα(→)1,α(→)2线性相关Cα(→)1,α(→)2,α(→)3线性相关Dα(→)1,α(→)2,α(→)3,α(→)4线性相关

单选题下列说法不正确的是(  ).As个n维向量α1,α2,…,αs线性无关,则加入k个n维向量β1,β2,…,βk后的向量组仍然线性无关Bs个n维向量α1,α2,…,αs线性无关,则每个向量增加k维分量后得到的向量组仍然线性无关Cs个n维向量α1,α2,…,αs线性相关,则加入k个n维向量β1,β2,…,βk后得到的向量组仍然线性相关.Ds个n维向量α1,α2,…,αs线性无关,则减少一个向量后得到的向量组仍然线性无关.

单选题设向量组α1,α2,α3线性无关,则下列向量组线性相关的是(  ).Aα1-α2,α2-α3,α3-α1Bα1+α2,α2+α3,α3+α1Cα1-2α2,α2-2α3,α3-2α1Dα1+2α2,α2+2α3,α3+2α1

单选题3维向量组A:α1,α2,…,αM线性无关的充分必要条件是().A对任意一组不全为0的数k1,k2,…,kM,都有后B向量组A中任意两个向量都线性无关C向量组A是正交向量组DαM不能由线性表示

填空题已知向量组(α(→)1,α(→)3),(α(→)1,α(→)3,α(→)4),(α(→)2,α(→)3)都线性无关,而(α(→)1,α(→)2,α(→)3,α(→)4)线性相关,则向量组(α(→)1,α(→)2,α(→)3,α(→)4)的极大无关组是____。

单选题已知向量组(α(→)1,α(→)3),(α(→)1,α(→)3,α(→)4),(α(→)2,α(→)3)都线性无关,而(α(→)1,α(→)2,α(→)3,α(→)4)线性相关,则向量组(α(→)1,α(→)2,α(→)3,α(→)4)的极大无关组是(  )。A(α(→)1,α(→)2,α(→)4)B(α(→)1,α(→)3,α(→)4)C(α(→)1,α(→)2,α(→)3)D(α(→)2,α(→)3,α(→)4)

单选题设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是()。Aβ必可用α1,α2线性表示Bα1必可用α2,α3,β线性表示Cα1,α2,α3必线性无关Dα1,α2,α3必线性相关

单选题设向量组α(→)1,α(→)2,α(→)3线性无关,向量β(→)1可由α(→)1,α(→)2,α(→)3线性表示,而向量β(→)2不能由α(→)1,α(→)2,α(→)3线性表示,则对任意常数,必有(  )。Aα(→)1,α(→)2,α(→)3,kβ(→)1+β(→)2线性无关Bα(→)1,α(→)2,α(→)3,kβ(→)1+β(→)2线性相关Cα(→)1,α(→)2,α(→)3,β(→)1+kβ(→)2线性无关Dα(→)1,α(→)2,α(→)3,β(→)1+kβ(→)2线性相关

单选题已知n元非齐次线性方程组Ax=B,秩r(A)=n-2,α1,α2,α3为其线性无关的解向量,k1,k2为任意常数,则Ax=B的通解为(  )。[2014年真题]Ax=k1(α1-α2)+k2(α1+α3)+α1Bx=k1(α1-α3)+k2(α2+α3)+α1Cx=k1(α2-α1)+k2(α2-α3)+α1Dx=k1(α2-α3)+k2(α1+α2)+α1

单选题设α(→)1,α(→)2,…,α(→)s均为n维列向量,A是m×n矩阵,下列选项正确的是(  )。A若α(→)1,α(→)2,…,α(→)s线性相关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性相关B若α(→)1,α(→)2,…,α(→)s线性相关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性无关C若α(→)1,α(→)2,…,α(→)s线性无关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性相关D若α(→)1,α(→)2,…,α(→)s线性无关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性无关

单选题n维向量α(→)1,α(→)2,…,α(→)s线性无关的充要条件是(  )。A存在不全为0的k1,k2,…,ks使klα(→)1+k2α(→)2+…+ksα(→)s≠0(→)B添加向量β(→)后,α(→)1,α(→)2,…,α(→)s,β(→)线性无关C去掉任一向量α(→)i后,α(→)1,α(→)2,…,α(→)i-1,α(→)i+1,…,α(→)s线性无关Dα(→)1,α(→)2-α(→)1,α(→)3-α(→)1,…,α(→)s-α(→)1线性无关

单选题设n维向量组(Ⅰ)α(→)1,α(→)2,…,α(→)s线性无关,(Ⅱ)β(→)1,β(→)2,…,β(→)t线性无关,且α(→)i不能由(Ⅱ)线性表示(i=1,2,…,s),且β(→)j不能由(Ⅰ)线性表示(j=1,2,…,t),则向量组α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t(  )。A一定线性相关B一定线性无关C可能线性相关,也可能线性无关D既不线性相关,也不线性无关