单选题设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是( )。[2012年真题]Aβ必可用α1,α2线性表示Bα1必可用α2,α3,β线性表示Cα1,α2,α3必线性无关Dα1,α2,α3必线性相关
单选题
设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是( )。[2012年真题]
A
β必可用α1,α2线性表示
B
α1必可用α2,α3,β线性表示
C
α1,α2,α3必线性无关
D
α1,α2,α3必线性相关
参考解析
解析:
由α1,α2,β线性相关知,α1,α2,α3,β线性相关。再由α2,α3,β线性无关, α1必可用α2,α3,β线性表示。
由α1,α2,β线性相关知,α1,α2,α3,β线性相关。再由α2,α3,β线性无关, α1必可用α2,α3,β线性表示。
相关考题:
设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是()。 A、a1-a2,a2-a3,a3-a1B、a1,a2,a3+a1C、a1,a2,2a1-3a2D、a2,a3,2a2+a3
设α1,α2,α3,α4 是三维实向量,则( )A. α1,α2,α3,α4一定线性无关 B. α1一定可由α2,α3,α4线性表出C. α1,α2,α3,α4一定线性相关 D. α1,α2,α3一定线性无关
设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。A.若向量组I线性无关.则r≤SB.若向量组I线性相关,则r>sC.若向量组Ⅱ线性无关,则r≤sD.若向量组Ⅱ线性相关,则r>s
设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是()。A、β必可用α1,α2线性表示B、α1必可用α2,α3,β线性表示C、α1,α2,α3必线性无关D、α1,α2,α3必线性相关
单选题设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是( ).A向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示B向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示C向量组α1,…,αm与向量组β1,…,βm等价D矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m
单选题设向量组α1,α2,α3线性无关,则下列向量组线性相关的是( ).Aα1-α2,α2-α3,α3-α1Bα1+α2,α2+α3,α3+α1Cα1-2α2,α2-2α3,α3-2α1Dα1+2α2,α2+2α3,α3+2α1
单选题设向量组(Ⅰ):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示,则( ).Ar<s时,向量组(Ⅱ)必线性相关Br>s时,向量组(Ⅱ)必线性相关Cr<s时,向量组(Ⅰ)必线性相关Dr>s时,向量组(Ⅰ)必线性相关
单选题设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是( )。[2012年真题]Aβ必可用α1,α2线性表示Bα1必可用α2,α3,β线性表示Cα1,α2,α3必线性无关Dα1,α2,α3必线性相关
单选题设n阶方阵A=(α(→)1,α(→)2,…,α(→)n),B=(β(→)1,β(→)2,…,β(→)n),AB=(γ(→)1,γ(→)2,…,γ(→)n),记向量组(Ⅰ):α(→)1,α(→)2,…,α(→)n;(Ⅱ): β(→)1,β(→)2,…,β(→)n;(Ⅲ):γ(→)1,γ(→)2,…,γ(→)n。如果向量组(Ⅲ)线性相关,则( )。A向量组(Ⅰ)与(Ⅱ)都线性相关B向量组(Ⅰ)线性相关C向量组(Ⅱ)线性相关D向量组(Ⅰ)与(Ⅱ)中至少有一个线性相关
单选题设向量组α(→)1,α(→)2,α(→)3线性无关,向量β(→)1可由α(→)1,α(→)2,α(→)3线性表示,而向量β(→)2不能由α(→)1,α(→)2,α(→)3线性表示,则对任意常数,必有( )。Aα(→)1,α(→)2,α(→)3,kβ(→)1+β(→)2线性无关Bα(→)1,α(→)2,α(→)3,kβ(→)1+β(→)2线性相关Cα(→)1,α(→)2,α(→)3,β(→)1+kβ(→)2线性无关Dα(→)1,α(→)2,α(→)3,β(→)1+kβ(→)2线性相关
单选题下列说法不正确的是( )。As个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后的向量组仍然线性无关Bs个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则每个向量增加k维分量后得到的向量组仍然线性无关Cs个n维向量α(→)1,α(→)2,…,α(→)s线性相关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后得到的向量组仍然线性相关Ds个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则减少一个向量后得到的向量组仍然线性无关
单选题设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是()。Aβ必可用α1,α2线性表示Bα1必可用α2,α3,β线性表示Cα1,α2,α3必线性无关Dα1,α2,α3必线性相关
单选题设n维向量组(Ⅰ)α(→)1,α(→)2,…,α(→)s线性无关,(Ⅱ)β(→)1,β(→)2,…,β(→)t线性无关,且α(→)i不能由(Ⅱ)线性表示(i=1,2,…,s),且β(→)j不能由(Ⅰ)线性表示(j=1,2,…,t),则向量组α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t( )。A一定线性相关B一定线性无关C可能线性相关,也可能线性无关D既不线性相关,也不线性无关
单选题已知向量组(α(→)1,α(→)3),(α(→)1,α(→)3,α(→)4),(α(→)2,α(→)3)都线性无关,而(α(→)1,α(→)2,α(→)3,α(→)4)线性相关,则向量组(α(→)1,α(→)2,α(→)3,α(→)4)的极大无关组是( )。A(α(→)1,α(→)2,α(→)3)B(α(→)1,α(→)2,α(→)4)C(α(→)1,α(→)3,α(→)4)D(α(→)2,α(→)3,α(→)4)
单选题设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是( )。A向量组α(→)1,α(→)2,…,α(→)m可以由β(→)1,β(→)2,…,β(→)m线性表示B向量组β(→)1,β(→)2,…,β(→)m可以由α(→)1,α(→)2,…,α(→)m线性表示C向量组α(→)1,α(→)2,…,α(→)m与向量组β(→)1,β(→)2,…,β(→)m等价D矩阵A=(α(→)1,α(→)2,…,α(→)m)与矩阵B=(β(→)1,β(→)2,…,β(→)m)等价
单选题设α(→)1,α(→)2,…,α(→)s均为n维列向量,A是m×n矩阵,下列选项正确的是( )。A若α(→)1,α(→)2,…,α(→)s线性相关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性相关B若α(→)1,α(→)2,…,α(→)s线性相关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性无关C若α(→)1,α(→)2,…,α(→)s线性无关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性相关D若α(→)1,α(→)2,…,α(→)s线性无关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性无关
单选题设向量α1、α2、α3线性无关,向量β1可由αl、α2、α3线性表示,向量β2不能由α1、α2、α3线性表示,则对任意常数k必有( ).Aα1、α2、α3、kβ1+β2线性无关Bα1、α2、α3、kβ1+β2线性相关Cα1、α2、α3、β1+kβ2线性元关Dα1、α2、α3、β1+kβ2线性相关