单选题设n阶方阵A=(α(→)1,α(→)2,…,α(→)n),B=(β(→)1,β(→)2,…,β(→)n),AB=(γ(→)1,γ(→)2,…,γ(→)n),记向量组(Ⅰ):α(→)1,α(→)2,…,α(→)n;(Ⅱ): β(→)1,β(→)2,…,β(→)n;(Ⅲ):γ(→)1,γ(→)2,…,γ(→)n。如果向量组(Ⅲ)线性相关,则(  )。A向量组(Ⅰ)与(Ⅱ)都线性相关B向量组(Ⅰ)线性相关C向量组(Ⅱ)线性相关D向量组(Ⅰ)与(Ⅱ)中至少有一个线性相关

单选题
设n阶方阵A=(α(→)1,α(→)2,…,α(→)n),B=(β(→)1,β(→)2,…,β(→)n),AB=(γ(→)1,γ(→)2,…,γ(→)n),记向量组(Ⅰ):α(→)1,α(→)2,…,α(→)n;(Ⅱ): β(→)1,β(→)2,…,β(→)n;(Ⅲ):γ(→)1,γ(→)2,…,γ(→)n。如果向量组(Ⅲ)线性相关,则(  )。
A

向量组(Ⅰ)与(Ⅱ)都线性相关

B

向量组(Ⅰ)线性相关

C

向量组(Ⅱ)线性相关

D

向量组(Ⅰ)与(Ⅱ)中至少有一个线性相关


参考解析

解析:
由向量组(Ⅲ)线性相关,知矩阵AB不可逆,即|AB|=|A|·|B|=0,因此|A|、|B|中至少有一个为0,即A与B中至少有一个不可逆,故向量组(Ⅰ)与(Ⅱ)中至少有一个线性相关。

相关考题:

设A,B均为n阶非零方阵,下列选项正确的是() A. (A+B)(A-B) = A^2-B^2B. (AB)^-1 = B^-1A^-1C. 若AB= O, 则A=O或B=OD. |AB| = |A| |B|

设A,B均为n阶方阵,则() A、若|A+AB|=0,则|A|=0或|E+B|=0B、(A+B)^2=A^2+2AB+B^2C、当AB=O时,有A=O或B=OD、(AB)^-1=B^-1A^-1

设 A 、 B 为n阶方阵,AB=0 ,则

设A,B是n(n≥2)阶方阵,则必有( ).

设A是一个n阶方阵,已知 A =2,则 -2A 等于:A. (-2)n+1 B. (-1)n2n+1C. -2n+1 D. -22

设A与B都是n阶方阵,且,证明AB与BA相似.

设A,B为n阶矩阵.  (1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.

设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.  (1)证明B可逆;  (2)求AB^-1.

设A、B都是n阶方阵,满足AB=A-B,请证明:AB=BA

设n阶方阵是一个上三角矩阵,则需存储的元素个数为()。A.nB.n×nC.n×n/2D.n(n+1)/2

设A是一个n阶方阵,已知|A|=2,则|-2A|等于:()A、(-2)n+1B、(-1)n2n+1C、-2n+1D、-22

设A为n阶方阵,且|A|=a≠0,则|A*|等于()。A、aB、an-1C、an

设A,B的n阶方阵,以下命题正确的是()。A、(AB)T=ATBT

设A,B都是n阶方阵,下列等式不正确的是().A、(AB.T=ATBTB、D.(A-1=B-1A-1

单选题设A、B都是满秩的n阶方阵,则r(AB)=(  )。An-1BnCn+1Dn+2

问答题已知A=(aij),B=(bij)为两个n阶方阵。  X为n阶方阵。证明:AX=B有解的充要条件是n+1个矩阵A,A1,A2,…,An的秩相等。

单选题设A,B都是n阶方阵,下列等式不正确的是().A(AB.T=ATBTBD.(A-1=B-1A-1

单选题设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=(  )。A(A+E)/2B-(A+E)/2C(A-E)/2D-(A-E)/2

填空题设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=____。

单选题设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=(  )。A0B1C2D3

单选题设A、B都是满秩的n阶方阵,则r(AB)=(  )。A0B1Cn-1Dn

单选题设A是一个n阶方阵,已知│A│=2,则│-2A│等于:()A(-2)n+1B(-1)n2n+1C-2n+1D-22

单选题设A为n阶方阵,A*是A的伴随矩阵,则||A|A*|等于(  )。A|A|2B|A|nC|A|2nD|A|2n-1

填空题设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=____.

问答题设A为n阶方阵,若对任意n维向量x(→)=(x1,x2,…,xn)T都有Ax(→)=0。证明:A=0。

单选题设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=(  )。AA+2EBA+EC(A+E)/2D-(A+E)/2

单选题设A、B都是满秩的n阶方阵,则r(AB)=(  )。A1B2Cn-1Dn