问答题设A为n阶方阵,若对任意n维向量x(→)=(x1,x2,…,xn)T都有Ax(→)=0。证明:A=0。
问答题
设A为n阶方阵,若对任意n维向量x(→)=(x1,x2,…,xn)T都有Ax(→)=0。证明:A=0。
参考解析
解析:
暂无解析
相关考题:
设A为m*n矩阵,则有()。 A、若mn,则有ax=b无穷多解B、若mn,则有ax=0非零解,且基础解系含有n-m个线性无关解向量;C、若A有n阶子式不为零,则Ax=b有唯一解;D、若A有n阶子式不为零,则Ax=0仅有零解。
设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是() A、Ax=0只有零解B、Ax=0的基础解系含r(A)个解向量C、Ax=0的基础解系含n-r(A)个解向量D、Ax=0没有解
数列X1,X2,…,XP存在极限可以表述为:对任何ε>0,有N>0,使任何n,m>N,有│Xn-Xm<ε。数列X1,X2,…,XP不存在极限可以表述为(57)。A.对任何ε>0,有N>0,使任何n,m>N,有│Xn-Xm≥εB.对任何ε>0,任何N>0,有n,m>N,使│Xn-Xm≥εC.有ε>0,对任何N>0,有n,m>N,使│Xn-Xm≥εD.有ε>0,N>0,对任何n,m>N,有│Xn-Xm≥ε
设A是n*n常数矩阵(n>1),X是由未知数X1、X2、…、Xn组成的列向量,B是由常数b1、b2、…、bn组成的列向量,线性方程组AX=B有唯一解的充分必要条件不是______。A.A的秩等于nB.A的秩不等于0C.A的行列式值不等于0D.A存在逆矩阵A.B.C.D.
单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=( )。A-2B-1C0D1
单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=( )。A4B2C-1D1
问答题设X1,X2,…,Xn相互独立且同服从分布B(1,p),Z=X1+X2+…+Xn,证明Z~B(n,p)。