问答题设X1,X2,…,Xn相互独立且同服从分布B(1,p),Z=X1+X2+…+Xn,证明Z~B(n,p)。

问答题
设X1,X2,…,Xn相互独立且同服从分布B(1,p),Z=X1+X2+…+Xn,证明Z~B(n,p)。

参考解析

解析: 暂无解析

相关考题:

设X1,X2,…,Xn是简单随机样本,则有( )。A.X1,X2,…,Xn相互独立B.X1,X2,…,Xn有相同分布C.X1,X2,…,Xn彼此相等D.X1与(X1+X2)/2同分布E.X1与X2的均值相等

设随机变量X1,X2,…,Xn相互独立,Sn=X1+X2+…+Xn,则根据列维一林德伯格中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,X2,…,Xn( )。A.有相同的数学期望B.有相同的方差C.服从同一指数分布D.服从同一离散型分布

设X1,X2,…,Xn是简单随机样本,则有( )。A.X1,X2,…,Xn相互独立B.X1,X2,…,Xn有相同分布C.X1,X2,…,Xn彼此相等D.X1与(X1+X2)/2同分布E.X1与Xn的均值相等

设X1,X2,…Xn是简单随机样本,则有( )。A. X1,X2,…Xn相互独立 B. X1,X2,…Xn有相同分布C. X1,X2,…Xn彼此相等 D.X1与(X1,+X2)/2同分布E.X1与Xn的均值相等

设随机变量X1,X2,…,Xn相互独立且在[0,na]上服从均匀分布,令U=max{X1,X2,…,Xn},求U的数学期望与方差.

设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,依概率收敛于_______.

设总体X,Y相互独立且都服从N(μ,σ^2)分布,(X1,X2,…,Xn)与(Y1,Y1,…,yn)分别为来自总体X,Y的简单随机样本,证明:为参数σ^2的无偏估计量,

设x为一个总体且E(x)=k,D(x)=1,X1,X2,…,xn为来自总体的简单随机样本,令,问n多大时才能使P?

设X1,X2,…,Xn是来自总体X的简单随机样本,已知E(X^k)=ak(k=1,2,3,4).  证明:当n充分大时,随机变量近似服从正态分布,并指出其分布参数.

若随机变量x1,x2,…,xn相互独立同分布于N{μ,2^2},则根据切比雪夫不等式得P{|x-μ|≥2)≤_______.

设X1,2X,…,Xn(n>2)相互独立且都服从N(0,1),Yi=Xi-X(i=1,2,…,n).求:  (1)D(Yi)(i=1,2,…,n);(2)Cov(Y1,Yn);(3)P(Yn+Yn≤0).

某工程师为了解一台天平的精度,用该天平对一物体的质量做n次测量,该物体的质量μ是已知的,设n次测量结果X1,X2,…,Xn相互独立且均服从正态分布N(μ,σ^2).该工程师记录的是n次测量的绝对误差Zi=|Xi-μ|(i=1,2,…,n),利用Z1,Z2,…,Zn估计σ.  (Ⅰ)求Z1的概率密度;  (Ⅱ)利用一阶矩求σ的矩估计量;  (Ⅲ)求σ的最大似然估计量.

设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1}=.记Fz(z)为随机变量Z=XY的分布函数,则函数Fz(z)的间断点个数为 A.A0B.1C.2D.3

设随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为P{Y=-1}=p,P{Y=1)=1-p,(0  (Ⅰ)求Z的概率密度;  (Ⅱ)p为何值时,X与Z不相关;  (Ⅲ)X与Z是否相互独立?

设随机变量X与Y相互独立,X的概率分布为P{X=1}=P{X=-1}=,Y服从参数为λ的泊松分布.令Z=XY.  (Ⅰ)求Cov(X,Z);  (Ⅱ)求Z的概率分布.

设总体X服从参数λ的指数分布,X1,X2,…,Xn是从中抽取的样本,则E(X)为( )。

设随机变量X1,X2,…,Xn相互独立,Sn=X1,X2,…,Xn则根据列维林德伯格(Levy-Lindberg)中心极限定理,当n充分大时,Sn近似服从正态分布,只要1,X2,…,XnA.有相同的数学期望.B.有相同的方差.C.服从同一指数分布.D.服从同一离散分布.

设X1,X2,…,Xn,…相互独立,则X1,X2,…,Xn,…满足辛钦大数定律的条件是( ) A.X1,X2,…,Xn,…同分布且有相同的数学期望与方差B.X1,X2,…,Xn,…同分布且有相同的数学期望C.X1,X2,…,Xn,…为同分布的离散型随机变量D.X1,X2,…,Xn,…为同分布的连续型随机变量

设X1,X2,…,Xn,…为独立同分布的随机变量列,且均服从参数为λ(λ>1)的指数分布,记φ(x)为标准正态分布函数,则

设X1,X2...,Xn是来自总体的简单随机样本,则X1,X2,...,Xn必然满足()A、独立但分布不同B、分布相同但不相互独立C、独立同分布D、不能确定

设X1,X2,…,Xn是从总体X中抽取的容量为n的一个样本,如果由此样本构造一个函数T(X1,X2,…,Xn),不依赖于任何未知参数,则函数T(X1,X2,…,Xn)是一个()

问答题设X1,X2,…,Xn相互独立且同服从分布B(1,p),Z=X1+X2+…+Xn,证明Z~B(n,p)。

单选题设总体X服从区间[-2,4]上的均匀分布,x1,x2,···,xn为其样本,则( )A n/3B 1/3C 3/nD 3

问答题设总体X~N(μ,σ2),x1,x2,…xn为其样本,为样本均值,则____.

多选题设X1,X2,…,Xn是简单随机样本,则有(  )。AX1,X2,…,Xn相互独立 BX1,X2,…,Xn有相同分布CX1,X2,…,Xn彼此相等, DX1与(X1+X2)/2同分布EX1与Xn的均值相等

问答题设A为n阶方阵,若对任意n维向量x(→)=(x1,x2,…,xn)T都有Ax(→)=0。证明:A=0。

问答题设A为n阶方阵,若对任意n维向量X=(x1,x2,…,xn)T都有AX=0.证明:A=0.

问答题设函数f(x)在(a,b)内连续,a<x1<x2<…<xn<b,证明:必∃ξ∈(a,b),使f(ξ)=[f(x1)+f(x2)+…+f(xn)]/n。