3、下列命题错误的是() A.若线性方程组系数行列式不等于零,则该方程组有唯一解 B.若线性方程组系数行列式不等于零,则该方程组无解 C.若齐次线性方程组系数行列式等于零,则该方程组有非零解 D.若齐次线性方程组系数行列式不等于零,则该方程组只有零解

3、下列命题错误的是() A.若线性方程组系数行列式不等于零,则该方程组有唯一解 B.若线性方程组系数行列式不等于零,则该方程组无解 C.若齐次线性方程组系数行列式等于零,则该方程组有非零解 D.若齐次线性方程组系数行列式不等于零,则该方程组只有零解


参考答案和解析
命题(1)是错误的反例:取向量 则向量组a 1 a 2 a 3 线性相关因它含有零向量.但a 1 并不能由a 2 a 3 线性表示因为a 2 a 3 的任何的线性组合所得向量的第一个分量是零.命题(2)是错误的反例:取 再取λ 1 =λ 2 =1则有λ 1 a 1 +λ 2 a 2 +λ 1 b 1 +λ 2 b 2 =0成立但a 1 a 2 线性无关;b 1 b 2 也线性无关.命题(3)是错误的反例:取 此时若有λ 1 a 1 +λ 2 a 2 +λ 1 b 1 +λ 2 b 2 = 成立只有λ 1 =λ 2 =0但向量组a 1 a 2 和向量组b 1 b 2 都线性相关.命题(4)是错误的反例:取 则向量组a 1 a 2 和向量组b 1 b 2 均线性相关.但对此两向量组不存在不全为零的数λ 1 λ 2 使λ 1 a 1 +λ 2 a 2 =0和λ 1 b 1 +λ 2 b 2 =0同时成立因由上面第一式可得 于是λ 2 =0同理由第二式得λ 1 =0. 命题(1)是错误的,反例:取向量则向量组a1,a2,a3线性相关,因它含有零向量.但a1并不能由a2,a3线性表示,因为a2,a3的任何的线性组合所得向量的第一个分量是零.命题(2)是错误的,反例:取再取λ1=λ2=1,则有λ1a1+λ2a2+λ1b1+λ2b2=0成立,但a1,a2线性无关;b1,b2也线性无关.命题(3)是错误的,反例:取此时若有λ1a1+λ2a2+λ1b1+λ2b2=成立,只有λ1=λ2=0,但向量组a1,a2和向量组b1,b2都线性相关.命题(4)是错误的,反例:取则向量组a1,a2和向量组b1,b2均线性相关.但对此两向量组不存在不全为零的数λ1,λ2使λ1a1+λ2a2=0和λ1b1+λ2b2=0同时成立,因由上面第一式可得于是λ2=0,同理由第二式得λ1=0.

相关考题:

若齐次线性方程组中方程的个数小于未知数的个数,则该方程组必有非零解。() 此题为判断题(对,错)。

若四阶方阵的秩为3,则( )A.A为可逆阵 B.齐次方程组Ax=0有非零解C.齐次方程组Ax=0只有零解 D.非齐次方程组Ax=b必有解

设n元齐次线性方程组AX=O只有零解,则秩(A)=()。

设线性方程组AX=b有唯一解,则相应的齐次方程组AX=0解的情况是()。 A.有非零解B.只有零解C.无解D.解不能确定

如果线性方程组的系数矩阵满秩,则该方程组一定有解组,且解是唯一的。() 此题为判断题(对,错)。

如果线性方程组的系数矩阵满秩则该方程组一定有解且解是唯一的。() 此题为判断题(对,错)。

非齐次线性方程组任意两个解之差为对应系数的齐次线性方程组的解。()

n阶行列式Dn=0的必要条件是( )。A.以Dn为系数行列式的齐次线性方程组有非零解B.Dn中有两行(或列)元素对应成比例C.Dn中各列元素之和为零D.Dn中有一行(或列)元素全为零

若A是m×n矩阵,且m≠n,则当R(A)=n时,齐次线性方程组AX=0只有零解

若A是m×n矩阵,且m≠n,则当R(A)=n时,非齐次线性方程组AX=b,有唯一解

设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解B.若Ax=0有非零解,则Ax=b有无穷多个解C.若Ax=b有无穷多个解,则Ax=0仅有零解D.若Ax=b有无穷多个解,则Ax=0有非零解

设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在.B.仅含一个非零解向量.C.含有两个线性无关的解向量.D.含有三个线性无关的解向量.

设A是m×n阶矩阵,下列命题正确的是().A.若方程组AX=0只有零解,则方程组AX=b有唯一解B.若方程组AX=0有非零解,则方程组AX=b有无穷多个解C.若方程组AX=b无解,则方程组AX=0一定有非零解D.若方程组AX=b有无穷多个解,则方程组AX=0一定有非零解

设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充要条件为( )。A.r=nB.r<nC.r≥nD.r>n

要使齐次线性方程组有非零解,则a应满足(  )。 A. -2<a<1 B. a=1或a=-2 C. a≠-1且a≠-2 D. a>1

取何值时,非齐次线性方程组 (1)有唯一解 (2)无解 (3)有无穷多个解? 并在无穷多个解时,求方程组的通解。

已知非齐次线性方程组 有3个线性无关的解. (Ⅰ)证明方程组系数矩阵A的秩; (Ⅱ)求的值及方程组的通解

设有齐次线性方程组    试问a为何值时,该方程组有非零解,并求其通解.

问取何值时 非齐次线性方程组, (1)有唯一解 (2)无解 (3)有无穷多个解,并在无穷多个解时,求方程组的通解

设有齐次线性方程组.试问取何值时,该方程组有非零解,并求出其通解

问:齐次线性方程组有非零解时,a,b必须满足什么条件?

设n元线性方程组Ax=b,其中  .  (Ⅰ)证明行列式|A|=(n+1)a^n;  (Ⅱ)当a为何值时,该方程组有唯一解,并求x1;  (Ⅲ)当a为何值时,该方程组有无穷多解,并求通解.

已知齐次线性方程组(1)方程组仅有零解;(2)方程组有非零解,在有非零解时,求此方程组的一个基础解系.

设非齐次线性方程组( I )的导出方程组为(II),则()。A.当(I )只有唯一 解时,(II)只有零解B. (I )有解的充分必要条件是(II)有解C.当(I )有非零解时,(II)有无穷多解D.当(I)有非零解时,(I )有无穷多解

设A是4×6矩阵,则齐次线性方程组AX=0解的情况是()。A、无解B、只有零解C、有非零解D、不一定

单选题设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是(  )。A若Ax=0仅有零解,则Ax=b有唯一解B若Ax=0有非零解,则Ax=b有无穷多个解C若Ax=b有无穷多个解,则Ax=0仅有零解D若Ax=b有无穷多个解,则Ax=0有非零解

单选题设A是4×6矩阵,则齐次线性方程组AX=0解的情况是()。A无解B只有零解C有非零解D不一定

填空题设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|____。