平行四边形ABCD如右图所示,E为AB上的一点,F、G分别是AC和DE、DB的交点。若AB=3AE,则四边形BEFG与ABCD的面积之比是:A.2︰7B.3︰13C.4︰19D.5︰24
平行四边形ABCD如右图所示,E为AB上的一点,F、G分别是AC和DE、DB的交点。若AB=3AE,则四边形BEFG与ABCD的面积之比是:
A.2︰7
B.3︰13
C.4︰19
D.5︰24
B.3︰13
C.4︰19
D.5︰24
参考解析
解析:第一步,本题考查几何问题,属于平面几何类,用赋值法解题。
第二步,题干没给出具体数值,可以采用赋值法解题。赋值AB=3,平行四边形ABCD的高为4,则AE=1;由于△AEF相似于△CDF,则两个三角形的高之比为AE:DC=1︰3,可知△AEF的高为
4*1/4=1。△ABG与△CDG全等,则△ABG的高为4÷2=2。
第三步,四边形BEFG面积=△ABG面积-△AEF面积=
四边形ABCD面积=3×4=12,两者之比为 ︰12=5︰24。
因此,选择D选项。
第二步,题干没给出具体数值,可以采用赋值法解题。赋值AB=3,平行四边形ABCD的高为4,则AE=1;由于△AEF相似于△CDF,则两个三角形的高之比为AE:DC=1︰3,可知△AEF的高为
4*1/4=1。△ABG与△CDG全等,则△ABG的高为4÷2=2。
第三步,四边形BEFG面积=△ABG面积-△AEF面积=
四边形ABCD面积=3×4=12,两者之比为 ︰12=5︰24。
因此,选择D选项。
相关考题:
在平行四边形ABCD中,∠DAB=60°,AB=15cm.已知⊙O的半径等于3cm,AB,AD分别与⊙O相切于点E,F,⊙O在平行四边形ABCD内沿AB方向滚动,与BC边相切时运动停止,试求⊙O滚过的路程.
有关系模式R=ABCD,其函数依赖集为F={A→B,B→C,AB→D,AB→E,A→DE},则F的最小覆盖( )。A.G1={A→B,A→C,A→D,A→E)B.G2={A→B,B→C,AB→D}C.G3=={A→B,B→C,A→D,A→E}D.G4={A→C,A→D,A→E}
有关系模式R=ABCD,其函数依赖集为F=A->B,B->C,AB->D,AB->E,A->DE,则F的最小覆盖为______。A.G1=A->B,A->C,A->D,A->EB.G2=A->B,B->C,AB->DC.G3=A->B,B->C,A->D,A->ED.G4=A->C,A->D,A->E
对边相等,对角相等的凸四边形,是平行四边形吧? 方法①∠B小于90°;左上为A,左下为B,右下为C,右上为D;已知∠B=∠D;AB=CD;证明:过A作AN⊥BC于N;过C作CM⊥AD于M;连接AC∵AN⊥BC;CM⊥AD∴∠ANB=∠DMC=90°又∵∠B=∠D;AB=CD∴△ANB=△DMC(AAS)∴AN=CM;BN=DM又∵∠ANB=∠DMC=90°,AC=AC∴△ACD=△AMD(HL)∴AM=DN又∵BN=DM∴BD=AC∵BD=AC;AB=CD∴凸四边形ABCD为平行四边型。方法②∠B大于90°左上为A,左下为B,右下为C,右上为D;已知∠B=∠D;AB=CD;证明:延长CD,过A作AN⊥BC于N;延长AB,过C作CM⊥AD于M;连接AC∵AN⊥BC;CM⊥AD∴∠ANB=∠DMC=90°又∵∠B=∠D;AB=CD∴△ANB=△DMC(AAS)∴AN=CM;BN=DM又∵∠ANB=∠DMC=90°,AC=AC∴△ACD=△AMD(HL)∴AM=DN又∵BN=DM∴BD=AC∵BD=AC;AB=CD∴凸四边形ABCD为平行四边型。方法③∠B等于90°证明:∵∠B=∠D=90°;AB=CD;AC=AC∴△ABC=△ADC(HL)∴AB=CB∵BD=AC;AB=CD∴凸四边形ABCD为平行四边型。有错吗?若我的证明有错请明示,我知道有个反例,但它是凹四边形。
设关系模式R (U,F),其中U为属性集, F是U上的一组函数依赖,那么函数依赖的公理系统(Armstrong公理系统)中的合并规则是指为( )为F所蕴涵。A.若AB,BC,则ACB.若YXU,则XY。C.若AB,AC ,则ABCD.若AB,CB,则AC
如图:已知圆0,点P在圆外,D,E在圆上,PE交圆于C,PD与圆相切,G为CE上一点且满足PG=PD,连接DG并延长交圆于A,作弦AB⊥EP,垂足为F。 (1)求证:AB为圆的直径; (2)若AC=BD,AB=5,求弦DE的长。
在平行四边形ABCD中,∠DAB=60,AB=15cm,已知圆O的半径等于3cm,AB,AD分别与圆O相切于点E,F.圆0在平行四边形ABCD内沿AB方向滚动,与BC边相切时运动停止.试求圆O滚过的路程.
如右图,在梯形ABCD中,点E、F分别是腰AB、CD上的点. (1)证明:如果E、F为中点时,有 EF=1/2(AD+BC); (2)请写出(1)中命题的逆命题,并判断该逆命题是否成立,若成立,请给予证明;若不成立,请说明理由.
如右图所示,梯形ABCD的对角线AC⊥BD,其中AD=1/2,BC=3,AC=14/5 ,BD=2.1.问梯形ABCD的高AE的值是: A. 43/24B. 1.72C. 42/25D. 1.81
如右图所示,△ABC是等腰直角三角形,AB=12,AD的长度是CD的2倍,四边形EBCD与△AED的面积之比为3:2,问AE的长度是多少( ) A.6.9 B.7.1 C.7.2 D.7.4
如右图所示,在△ABC:中,D为AC的中点,E在BC上,且 BE : EC=1 : 2,AE与BD交于F。则△BEF与四边形EFDC 的面积之比为( )。A. 1 : 3 B. 1 : 4C. 1 : 5 D. 1 : 6
如图,平行四边形ABCD的面积是54平方厘米,点E、F、G分别是平行四边形ABCD边上的中点,H为AD边上的任意一点,则阴影部分的面积为( )平方厘米。A. 27B. 28C. 32D. 36
已知圆内接四边形ABCD中,AB、CD的延长线交与点F,则F=()A、40°B、50°C、60°D、70°