如右图所示,在△ABC:中,D为AC的中点,E在BC上,且 BE : EC=1 : 2,AE与BD交于F。则△BEF与四边形EFDC 的面积之比为( )。A. 1 : 3 B. 1 : 4C. 1 : 5 D. 1 : 6
如右图所示,在△ABC:中,D为AC的中点,E在BC上,且 BE : EC=1 : 2,AE与BD交于F。则△BEF与四边形EFDC 的面积之比为( )。
A. 1 : 3 B. 1 : 4
C. 1 : 5 D. 1 : 6

A. 1 : 3 B. 1 : 4
C. 1 : 5 D. 1 : 6
参考解析
解析:

相关考题:
如右图,正四面体P-ABC的棱长为口,D、E、F分别为棱PA、PB、PC的中点,G、H、M分别为DE、EF、FD的中点,则三角形GHM的面积与正四面体P-ABC的表面积之比为:A.1:8B.1:16C.1:32D.1:64
一块三角形农田ABC(如下图所示)被DE、EF两条道路分为三块。已知BD=2AD,CE=2AE,CF=2BF,则三角形ADE、三角形CEF和四边形BDEF的面积之比为:A.1∶3∶3B.1∶3∶4C.1∶4∶4D.1∶4∶5
如右图,在梯形ABCD中,点E、F分别是腰AB、CD上的点. (1)证明:如果E、F为中点时,有 EF=1/2(AD+BC); (2)请写出(1)中命题的逆命题,并判断该逆命题是否成立,若成立,请给予证明;若不成立,请说明理由.
如右图所示,梯形ABCD的对角线AC⊥BD,其中AD=1/2,BC=3,AC=14/5 ,BD=2.1.问梯形ABCD的高AE的值是: A. 43/24B. 1.72C. 42/25D. 1.81
如右图所示,△ABC是等腰直角三角形,AB=12,AD的长度是CD的2倍,四边形EBCD与△AED的面积之比为3:2,问AE的长度是多少( ) A.6.9 B.7.1 C.7.2 D.7.4
人行道ABC,BC长286cm,D为BC中点。AD直线距离为324cm,过B点做直线BE,过C点做垂线与BE交于E点,问AE最小距离为多少?A.38cmB.168cmC.176cmD.181cm
如图所示,在长方形ABC.D中,AD=2AB,E为BC.的中点,F为EC.上任意一点(与E点、C.点不重合),从图形6个点中随机选取3个,能构成直角三角形的概率为:A.1/2B.9/20C.7/20D.2/5
(10分)如图,几何体A1B1C1-ABC中,AB=AC,AB⊥AC,棱AA1,BB1,CC1都垂直于面ABC,BC=AA1=2BB1=2CC1=4,D为B1C1的中点,E为A1D的中点。 求证:(1)AE⊥BC;(3分) (2)求异面直线AE与DC所成角的余弦值。(7分)
圆内接四边形ABCD的一组对边AD、BC的延长线相交于户,对角线AC、BD相交于Q点,则图中共有相似三角形()。A、4对B、2对C、1对D、3对