对边相等,对角相等的凸四边形,是平行四边形吧? 方法①∠B小于90°;左上为A,左下为B,右下为C,右上为D;已知∠B=∠D;AB=CD;证明:过A作AN⊥BC于N;过C作CM⊥AD于M;连接AC∵AN⊥BC;CM⊥AD∴∠ANB=∠DMC=90°又∵∠B=∠D;AB=CD∴△ANB=△DMC(AAS)∴AN=CM;BN=DM又∵∠ANB=∠DMC=90°,AC=AC∴△ACD=△AMD(HL)∴AM=DN又∵BN=DM∴BD=AC∵BD=AC;AB=CD∴凸四边形ABCD为平行四边型。方法②∠B大于90°左上为A,左下为B,右下为C,右上为D;已知∠B=∠D;AB=CD;证明:延长CD,过A作AN⊥BC于N;延长AB,过C作CM⊥AD于M;连接AC∵AN⊥BC;CM⊥AD∴∠ANB=∠DMC=90°又∵∠B=∠D;AB=CD∴△ANB=△DMC(AAS)∴AN=CM;BN=DM又∵∠ANB=∠DMC=90°,AC=AC∴△ACD=△AMD(HL)∴AM=DN又∵BN=DM∴BD=AC∵BD=AC;AB=CD∴凸四边形ABCD为平行四边型。方法③∠B等于90°证明:∵∠B=∠D=90°;AB=CD;AC=AC∴△ABC=△ADC(HL)∴AB=CB∵BD=AC;AB=CD∴凸四边形ABCD为平行四边型。有错吗?若我的证明有错请明示,我知道有个反例,但它是凹四边形。
对边相等,对角相等的凸四边形,是平行四边形吧?
方法①∠B小于90°;
左上为A,左下为B,右下为C,右上为D;
已知∠B=∠D;AB=CD;
证明:过A作AN⊥BC于N;
过C作CM⊥AD于M;
连接AC
∵AN⊥BC;CM⊥AD
∴∠ANB=∠DMC=90°
又∵∠B=∠D;AB=CD
∴△ANB=△DMC(AAS)
∴AN=CM;BN=DM
又∵∠ANB=∠DMC=90°,AC=AC
∴△ACD=△AMD(HL)
∴AM=DN
又∵BN=DM
∴BD=AC
∵BD=AC;AB=CD
∴凸四边形ABCD为平行四边型。
方法②∠B大于90°
左上为A,左下为B,右下为C,右上为D;
已知∠B=∠D;AB=CD;
证明:延长CD,过A作AN⊥BC于N;
延长AB,过C作CM⊥AD于M;
连接AC
∵AN⊥BC;CM⊥AD
∴∠ANB=∠DMC=90°
又∵∠B=∠D;AB=CD
∴△ANB=△DMC(AAS)
∴AN=CM;BN=DM
又∵∠ANB=∠DMC=90°,AC=AC
∴△ACD=△AMD(HL)
∴AM=DN
又∵BN=DM
∴BD=AC
∵BD=AC;AB=CD
∴凸四边形ABCD为平行四边型。
方法③∠B等于90°
证明:∵∠B=∠D=90°;AB=CD;AC=AC
∴△ABC=△ADC(HL)
∴AB=CB
∵BD=AC;AB=CD
∴凸四边形ABCD为平行四边型。
有错吗?若我的证明有错请明示,我知道有个反例,但它是凹四边形。
相关考题:
在平行四边形ABCD中,∠DAB=60°,AB=15cm.已知⊙O的半径等于3cm,AB,AD分别与⊙O相切于点E,F,⊙O在平行四边形ABCD内沿AB方向滚动,与BC边相切时运动停止,试求⊙O滚过的路程.
六边形ABCDEF中,AB∥ED,AF∥CD,BC∥FE,且AB=ED,AF=CD,BC=EF。又FD⊥BD,FD=24cm,BD=18cm,则六边形ABCDEF的面积为()。A.432cm2B.368cm2C.216cm2D.以上A、B、C均不正确
在平行四边形ABCD中,∠DAB=60,AB=15cm,已知圆O的半径等于3cm,AB,AD分别与圆O相切于点E,F.圆0在平行四边形ABCD内沿AB方向滚动,与BC边相切时运动停止.试求圆O滚过的路程.
下图为以AC、AD和AF为直径画成的三个圆形,已知AB、BC、CD、DE和EF之间的距离彼此相等。问小圆x、弯月y以及弯月z三部分的面积之比为:A.4:5:16B.4:5:14C.4:7:12D.4:3:10
铰链四杆机构ABCD,如果以BC为机架(静件),当机构为双曲柄机构时,各杆的长度可为()。A、AB=130 BC=150 CD=175 AD=200B、AB=150 BC=130 CD=165 AD=200C、AB=175 BC=130 CD=185 AD=200D、AB=200 BC=150 CD=165 AD=130