函数y=2x-2的图象与坐标轴的交点共有__________个.
函数y=2x-2的图象与坐标轴的交点共有__________个.
参考解析
解析:2
相关考题:
作出函数y=3-2x的图象,根据图象回答下列问题:(1)y的值随着x值增大而__________;(2)图象与x轴的交点坐标是_________________,与y轴的交点坐标是_______________;(3)当x__________时,y>0 。
11 、点 A ( 2 , y 1 ) 、 B ( 3 , y 2 )是二次函数 y=x 2- 2x+1 的图象上两点,则 y 1 与 y 2 的大小关系为 y 1 _________ y 2 (填 “ > ” 、 “ < ” 、 “ = ” ) .
下图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,-4). (1)求出图象与戈轴的交点A,B的坐标; 存在,请说明理由; ° (3)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围.
定义[a,b,c]为函数y=ax2+bc+c的特征数,下面给出特征数为[ 2m ,1-m,-1-m]的函数的一些结论: ①当m=-3时,函数图象的顶点坐标是{1/3,-(8/3)}; ②当m>0时,函数图象截石轴所得的线段长度大于3/2; ③当m1/4时,y随x的增大而减小; ④当m≠0时,函数图象经过同一个点。 其中正确的结论有()。A.②③④B.①②④C.③④D.②④
案例: 某教师关于“反比例函数图象”教学过程中的三个步骤为: 第一步:复习回顾 提出问题:我们已经学过一次函数的哪些内容 是如何研究的 第二步:引入新课。 提出问题:反比例函数的图象是什么形状呢 引导学生利用描点法画出y=1/2的图象。 列表: 描点: 连线:引导学生用光滑的曲线连接描点,并用计算机演示图象的生成过程。在此过程中启发学生思考,由于X,Y都不能为0,所以函数图象与X轴、Y轴不能有交点(如下图) ……(第三步过程省略) (1)该教学过程的主要特点是什么 (8分) (2)在第二步的连线过程中,如果你是该老师,如何引导学生思考所连的线不是直线,而是光滑曲线(6分) (3)对于第三步的③,如果你是该老师,如何引导学生思考函数图象在第一象限(或第三象限)的变化 (6分)
某教师关于“反比例函数图象”教学过程中的三个步骤为:第一步:复习回顾提出问题:我们已经学过一次函数的哪些内容?是如何研究的?第二步:引入新课。提出问题:反比例函数的图形是什么形状呢?引导学生利用描点法画出y=1/x的图象。列表:描点:连线:引导学生用光滑的曲线连接描点,并用计算机演示图象的生成过程。在此过程中启发学生思考,由于x,y都不能为0,所以函数图象与x轴、y轴不能有交点(如下图)……(第三步过程省略)(1)该教学过程的主要特点是什么?(2)在第二步的连线过程中,如果你是该老师,如何引导学生思考所连的线不是直线,而是光滑曲线(3)对于第三步的③,如果你是该老师,如何引导学生思考函数图象在第一象限(或第三象限)的变化?
填空题二次函数y=-x2+2x+n的图象与x轴的一个交点为(3,0),则n=____.