下图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,-4). (1)求出图象与戈轴的交点A,B的坐标; 存在,请说明理由; ° (3)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围.
下图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,-4).
(1)求出图象与戈轴的交点A,B的坐标;
存在,请说明理由;
° (3)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围.
(1)求出图象与戈轴的交点A,B的坐标;
存在,请说明理由;
° (3)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围.
参考解析
解析:解:(1)由二次函数Y=(x+m)2+k的顶点坐标为M(1,-4)可知,m=-1,k=-4.则二次函数Y=(x-1)2-4与x轴的交点为A(-1,0),8(3,0).
(3)如图,当直线Y=x+b经过A(-1,0)时-1+b=0,
可得b=1,又因为b<1,
故可知Y=x+b在Y=x+1的下方,
当直线Y=x+b经过点B(3,0)时,3+b=0,则b=-3,
由图可知,b的取值范围为-3<b<1时,
直线Y=x+b(b<1)与此图象有两个公共点.
(3)如图,当直线Y=x+b经过A(-1,0)时-1+b=0,
可得b=1,又因为b<1,
故可知Y=x+b在Y=x+1的下方,
当直线Y=x+b经过点B(3,0)时,3+b=0,则b=-3,
由图可知,b的取值范围为-3<b<1时,
直线Y=x+b(b<1)与此图象有两个公共点.
相关考题:
作出函数y=3-2x的图象,根据图象回答下列问题:(1)y的值随着x值增大而__________;(2)图象与x轴的交点坐标是_________________,与y轴的交点坐标是_______________;(3)当x__________时,y>0 。
根据二次函数图象上三个点的坐标,求出函数解析式:(1)(-1,3)(1,3)(2,6);(2) (-1,-1)(0,-2)(1,1);(3) (-1,0)(3,0)(1,-5);(4) (1,2)(3,0)(-2,20)。
11 、点 A ( 2 , y 1 ) 、 B ( 3 , y 2 )是二次函数 y=x 2- 2x+1 的图象上两点,则 y 1 与 y 2 的大小关系为 y 1 _________ y 2 (填 “ > ” 、 “ < ” 、 “ = ” ) .
定义[a,b,c]为函数y=ax2+bc+c的特征数,下面给出特征数为[ 2m ,1-m,-1-m]的函数的一些结论: ①当m=-3时,函数图象的顶点坐标是{1/3,-(8/3)}; ②当m>0时,函数图象截石轴所得的线段长度大于3/2; ③当m1/4时,y随x的增大而减小; ④当m≠0时,函数图象经过同一个点。 其中正确的结论有()。A.②③④B.①②④C.③④D.②④
初中数学《二次函数的图象与性质》一、考题回顾题目来源:5月18日 上午 湖北省黄石市 面试考题试讲题目1.题目:二次函数的图象与性质2.内容:3.基本要求:(1)掌握五点作图法的画图方法,能根据图象理解二次函数的性质;(2)试讲十分钟;(3)要有合适的板书。答辩题目1.二次函数 的顶点坐标如何表示?2.确定二次函数的表达式需要几个条件?
多媒体计算机处理图象和视频,首先必须将连续的图象函数f(x,y)进行空间和幅值的离散化处理,空间连续坐标(x,y)的离散化,叫做();f(x,y)颜色的离散化,称之为()。两种离散化结合在一起,叫做()。
填空题多媒体计算机处理图象和视频,首先必须将连续的图象函数f(x,y)进行空间和幅值的离散化处理,空间连续坐标(x,y)的离散化,叫做();f(x,y)颜色的离散化,称之为()。两种离散化结合在一起,叫做()。