案例: 某教师关于“反比例函数图象”教学过程中的三个步骤为: 第一步:复习回顾 提出问题:我们已经学过一次函数的哪些内容 是如何研究的 第二步:引入新课。 提出问题:反比例函数的图象是什么形状呢 引导学生利用描点法画出y=1/2的图象。 列表: 描点: 连线:引导学生用光滑的曲线连接描点,并用计算机演示图象的生成过程。在此过程中启发学生思考,由于X,Y都不能为0,所以函数图象与X轴、Y轴不能有交点(如下图) ……(第三步过程省略) (1)该教学过程的主要特点是什么 (8分) (2)在第二步的连线过程中,如果你是该老师,如何引导学生思考所连的线不是直线,而是光滑曲线(6分) (3)对于第三步的③,如果你是该老师,如何引导学生思考函数图象在第一象限(或第三象限)的变化 (6分)
案例:
某教师关于“反比例函数图象”教学过程中的三个步骤为:
第一步:复习回顾
提出问题:我们已经学过一次函数的哪些内容 是如何研究的
第二步:引入新课。
提出问题:反比例函数的图象是什么形状呢
引导学生利用描点法画出y=1/2的图象。
列表:
描点:
连线:引导学生用光滑的曲线连接描点,并用计算机演示图象的生成过程。在此过程中启发学生思考,由于X,Y都不能为0,所以函数图象与X轴、Y轴不能有交点(如下图)
……(第三步过程省略)
(1)该教学过程的主要特点是什么 (8分)
(2)在第二步的连线过程中,如果你是该老师,如何引导学生思考所连的线不是直线,而是光滑曲线(6分)
(3)对于第三步的③,如果你是该老师,如何引导学生思考函数图象在第一象限(或第三象限)的变化 (6分)
某教师关于“反比例函数图象”教学过程中的三个步骤为:
第一步:复习回顾
提出问题:我们已经学过一次函数的哪些内容 是如何研究的
第二步:引入新课。
提出问题:反比例函数的图象是什么形状呢
引导学生利用描点法画出y=1/2的图象。
列表:
描点:
连线:引导学生用光滑的曲线连接描点,并用计算机演示图象的生成过程。在此过程中启发学生思考,由于X,Y都不能为0,所以函数图象与X轴、Y轴不能有交点(如下图)
……(第三步过程省略)
(1)该教学过程的主要特点是什么 (8分)
(2)在第二步的连线过程中,如果你是该老师,如何引导学生思考所连的线不是直线,而是光滑曲线(6分)
(3)对于第三步的③,如果你是该老师,如何引导学生思考函数图象在第一象限(或第三象限)的变化 (6分)
参考解析
解析:(1)在导入过程运用了温故知新导人,优势是可以帮助学生复习已经学习过的知识,从学习过的知识当中找到前后联系。从而引出新课题,帮助学生快速进入课堂。
在新课教学过程中让学生通过动手操作画出反比例函数图象,但是在引导学生运用列表法的时候选出的点不够有代表性,x轴不能都是整数,可以随机的选取一部分分数,为下边讲解函数图象是一条光滑的曲线做准备。
另外在此过程中利用现代教学手段,计算机演示是一种很好的教学方法,可以很直观的将函数图象的动态画面展示给学生.方便学生建立数形结合的意识。
第三步.组织学生观察讨论曲线特点,根据选取图象中若干特殊点,总结在第一象限以及第三象限的变化情况。
(2)反比例函数图象的特点是光滑的曲线,而不是折线,这是区别一次函数图象最大的特点,首先我会请学生分小组讨论这个问题。如果反函数的图象的点是用折线连起来会是什么图形,用曲线连起来会是什么图形。给学生3分钟时间讨论,在讨论的过程中我会给与学生提示,我们选取的点是有限的,其实反比例函数的点是无数个的.为什么正多边形的边无限增多就变成了光滑的圆。讨论结束有小组代表回答,鉴于这个问题有难度,在学生回答结束之后我会给予详细的讲解:反比例函数的图象可通过描点法给出,折线是由若干直线组合而成,而直线必须对应一个一次函数,显然反比例函数不能对应到一次函数上,所以它不是折线,而是曲线。另外我们只是描了图象上少数的几个点,图象构架比较空,所以自然地认为看起来应该用折线连,如果多描几个点,多到密密麻麻的情况.就会明白其实这个就和“正多边形边数越多越接近圆。圆就是正多边形边数无限大时的情况”的道理是一样的。逐步提升学生有限无限思想。
(3)在此环节我将组织学生通过选取若干特殊点进行比较,独立思索曲线的变化情况,并鼓励学生大胆说出自己的想法,并给予鼓励,已达到锻炼学生从数学模型中抽象出数学结论的能力,对于数学图象的变化得到初步的锻炼以及提升。
在新课教学过程中让学生通过动手操作画出反比例函数图象,但是在引导学生运用列表法的时候选出的点不够有代表性,x轴不能都是整数,可以随机的选取一部分分数,为下边讲解函数图象是一条光滑的曲线做准备。
另外在此过程中利用现代教学手段,计算机演示是一种很好的教学方法,可以很直观的将函数图象的动态画面展示给学生.方便学生建立数形结合的意识。
第三步.组织学生观察讨论曲线特点,根据选取图象中若干特殊点,总结在第一象限以及第三象限的变化情况。
(2)反比例函数图象的特点是光滑的曲线,而不是折线,这是区别一次函数图象最大的特点,首先我会请学生分小组讨论这个问题。如果反函数的图象的点是用折线连起来会是什么图形,用曲线连起来会是什么图形。给学生3分钟时间讨论,在讨论的过程中我会给与学生提示,我们选取的点是有限的,其实反比例函数的点是无数个的.为什么正多边形的边无限增多就变成了光滑的圆。讨论结束有小组代表回答,鉴于这个问题有难度,在学生回答结束之后我会给予详细的讲解:反比例函数的图象可通过描点法给出,折线是由若干直线组合而成,而直线必须对应一个一次函数,显然反比例函数不能对应到一次函数上,所以它不是折线,而是曲线。另外我们只是描了图象上少数的几个点,图象构架比较空,所以自然地认为看起来应该用折线连,如果多描几个点,多到密密麻麻的情况.就会明白其实这个就和“正多边形边数越多越接近圆。圆就是正多边形边数无限大时的情况”的道理是一样的。逐步提升学生有限无限思想。
(3)在此环节我将组织学生通过选取若干特殊点进行比较,独立思索曲线的变化情况,并鼓励学生大胆说出自己的想法,并给予鼓励,已达到锻炼学生从数学模型中抽象出数学结论的能力,对于数学图象的变化得到初步的锻炼以及提升。
相关考题:
进行案例分析的步骤,正确的是()A、选择所要分析的案例;还原事情过程;分析案例;提出解决对策B、选择所要分析的案例;分析案例;还原事情过程;提出解决对策C、还原事情过程;选择所要分析的案例;分析案例;提出解决对策D、选择所要分析的案例;还原事情过程;提出解决对策;分析案例
案例教学法是高中思想政治课常用的教学方法,案例教学的主要步骤()。A、案例选择→目标确定→案例展开→知识迁移与案例复归B、目标确定→案例选择→案例展开→知识迁移与案例复归C、案例选择→案例展开→目标确定→知识迁移与案例复归D、目标确定→案例展开→案例选择→知识迁移与案例复归
下列说法正确的是()A、网点编辑员使用“数据报送-案例处理-案例分析”对反洗钱系统抽取的可疑案例进行人工分析,结合系统提供的客户信息、账户信息、案例信息等相关信息开展客户分析调查,根据分析调查结果添加案例处理意见信息和可疑程度等相关信息后进行可疑案例的上报或排除。B、案例分析后提交到网点审核员,审核员使用“数据报送-案例处理-案例审核”对网点编辑员上报的案例进行审核通过、排除或退回,排除和退回必须添加案例处理意见。C、案例审核后提交到系统管理员,系统管理员使用“数据报送-案例处理-案例审批”可对营业机构上报的案例进行审批通过、排除或退回,排除和退回必须添加案例处理意见。D、网点操作员使用“数据报送-案例处理-可疑案例特殊处理”对已排除的可疑案例进行查询和恢复。
多选题案例教学作为一个完整的教学过程,一般包括()几个环节。A选编案例B引入案例C分析讨论案例D评价案例