网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

In the past, taking a train in China was as comfortable as it is today.()


参考答案

更多 “ In the past, taking a train in China was as comfortable as it is today.() ” 相关考题
考题 If it ( ) tomorrow, we ( ) to the Summer Palace. A、rains, will goB、won't rain, goC、doesn't rain, will go

考题 Big Screen Complex has the__________ (comfortable) seats.

考题 We tried to make our guests ____.A.appropriateB.importantC.fitD.comfortable

考题 She picked up a dress ____ for the occasion.A.appropriateB.importantC.fitD.comfortable

考题 A) still lateB) too lateC) so lateD) past

考题 [A] comfortable [B] weak [C] risky [D] firm

考题 7、下载波士顿房价数据集,将训练集放入test_x中,则执行______语句可以获得其中的前5行数据。A.print(train_x[:, 5])B.print(train_x[:, 4])C.print(train_x[0:5])D.print(train_x[:4])

考题 在MINST数据集中,访问训练集train_x的第4个样本,可以通过_______语句实现。A.train_x[4]B.train_x[3]C.train_x[0:3]D.train_x[:4]

考题 下列哪些语句会开始模型的训练:A.LinearRegression().fit(x_train,y_train)B.lr_mod.predict(x_train)C.lasso_mod.fit(x_train,y_train)D.vote_mod.predict(x_train)

考题 5、对手写数字数据集MNIST中的train_x训练集(60000,28,28)进行切片,下面对切片结果描述错误的是_______。 import tensorflow as tf import numpy as np mnist = tf.keras.datasets.mnist (train_x, train_y), (test_x, test_y) = mnist.load_data()A.train_x[0, :, :]:第1张图片B.train_x[0:10, :, :]:前10张图片C.train_x[:, 0:28:2, :]:对所有图片隔行采样D.train_x[0:28:2, :, :]:对所有图片隔列采样