已知λ=2是三阶矩阵A的一个特征值,α1,α2是A的属于λ=2的特征向量。若α1=(1,2,0)T,α2=(1,0,1)T,向量β=(-1,2,-2)T,则Aβ等于()。A、(2,2,1)TB、(-1,2,_2)TC、(-2,4,-4)TD、(-2,-4,4)
已知λ=2是三阶矩阵A的一个特征值,α1,α2是A的属于λ=2的特征向量。若α1=(1,2,0)T,α2=(1,0,1)T,向量β=(-1,2,-2)T,则Aβ等于()。
- A、(2,2,1)T
- B、(-1,2,_2)T
- C、(-2,4,-4)T
- D、(-2,-4,4)
相关考题:
A为三阶矩阵,λ1,λ2,λ3为其特征值,的充分条件是().A.|λ1|=1,|λ2|1,|λ3|1B.|λ1|1,|λ2|=|λ3|=1C.|λ1|1,|λ2|1,|λ3|1D.|λ1|=|λ2|=|λ3|=1
设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().A.矩阵A不可逆B.矩阵A的迹为零C.特征值-1,1对应的特征向量正交D.方程组AX=0的基础解系含有一个线性无关的解向量
已知λ= 2是三阶矩A的一个特征值,α1、α2是A的属于λ= 2的特征向量。 若α1=(1,2,0)T,α2=(1,0,1)T,向量β= (-1,2,-2)T,则Aβ等于( )。A. (2,2,1)T B. (-1,2,-2)T C. (-2,4,-4)T D. (-2,-4,4)
设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A、α是矩阵-2A的属于特征值-2λ的特征向量B、α是矩阵的属于特征值的特征向量C、α是矩阵A*的属于特征值的特征向量D、α是矩阵AT的属于特征值λ的特征向量
单选题设A是三阶矩阵,α1=(1,0,1)T,α2=(1,1,0)T是A的属于特征值1的特征向量,α3=(0,1,2)T是A的属于特征值-1的特征向量,则:()Aα1-α2是A的属于特征值1的特征向量Bα1-α3是A的属于特征值1的特征向量Cα1-α3是A的属于特征值2的特征向量Dα1+α2+α3是A的属于特征值1的特征向量
单选题设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。Aα是矩阵-2A的属于特征值-2λ的特征向量Bα是矩阵的属于特征值的特征向量Cα是矩阵A*的属于特征值的特征向量Dα是矩阵AT的属于特征值λ的特征向量
问答题证明: (1)若α(→)1,α(→)2,…,α(→)r是A的属于特征值λ的特征向量,则α(→)1,α(→)2,…,α(→)r的任一个非零线性组合也是A的属于λ的特征向量。 (2)矩阵可逆的充分必要条件是它的特征值都不为0。
单选题已知n阶可逆矩阵A的特征值为λ0,则矩阵(2A)-1的特征值是( )。[2012年真题]A2/λ0Bλ0/2C1/(2λ0)D2λ0