设是非奇异矩阵A的特征值,则矩阵(2A3)- 1有一个特征值为:A.3B.4C.D.1
设是非奇异矩阵A的特征值,则矩阵(2A3)- 1有一个特征值为:
A.3
B.4
C.
D.1
B.4
C.
D.1
参考解析
解析:提示:利用矩阵的特征值与矩阵的关系的重要结论:设λ为A的特征值,则矩阵
相关考题:
设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().A.矩阵A不可逆B.矩阵A的迹为零C.特征值-1,1对应的特征向量正交D.方程组AX=0的基础解系含有一个线性无关的解向量
设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:(A) Pα (B) P-1α (C) PTa (D) P(-1)Ta
设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A、α是矩阵-2A的属于特征值-2λ的特征向量B、α是矩阵的属于特征值的特征向量C、α是矩阵A*的属于特征值的特征向量D、α是矩阵AT的属于特征值λ的特征向量
单选题设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。Aα是矩阵-2A的属于特征值-2λ的特征向量Bα是矩阵的属于特征值的特征向量Cα是矩阵A*的属于特征值的特征向量Dα是矩阵AT的属于特征值λ的特征向量
单选题设3阶方阵A有特征值2,且已知|A|=5,则A的伴随矩阵必有特征值().A25B12.5C5D2.5