已知二次型, (1)求出二次型f 的矩阵A的特征值;(2)写出二次型f 的标准形。

已知二次型, (1)求出二次型f 的矩阵A的特征值;(2)写出二次型f 的标准形。


参考解析

解析:

相关考题:

如果实对称矩阵A与矩阵合同,则二次型xTAx的规范形为().A.B.C.D.

下列说法正确的是().A.任一个二次型的标准形是唯一的B.若两个二次型的标准形相同,则两个二次型对应的矩阵的特征值相同C.若一个二次型的标准形系数中没有负数,则该二次型为正定二次型D.二次型的标准形不唯一,但规范形是唯一的

实二次型矩阵A正定的充分必要条件是( )。A.二次型的标准形的n个系数全为正B.|A|>0C.矩阵A的特征值为2D.r(A)=n

设二次型当 λ 为何值时,f是正定的?A.λ>1B.λ>2C.λ>2D.λ>0

矩阵所对应的二次型的标准形是(  )。 A. f=y1^2-3y2^2 B. f=y1^2-2y2^2 C. f=y1^2+2y2^2 D. f=y1^2-y2^2

设二次型要使f的秩为2,则参数t的值等于(  )。A.3B.2C.1D.0

写出二次型的矩阵

设二次型. (Ⅰ)求二次型的矩阵的所有特征值; (Ⅱ)若二次型的规范形为,求的值

设二次型  (b>0),  其中二次型的矩阵A的特征值之和为1,特征值之积为-12.  (1)求a,b的值;  (2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.

已知二次型的秩为2.(1)求a.(2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形.(3)求方程f(x1,x2,x3)=0的解

已知二次型经过正交变换化为标准型,求参数a,b及所用的正交变换矩阵

用配方法化二次型成规范形,并写出所用变换的矩阵.

化二次型为标准形和规范形

证明: 二次型在时的最大值为矩阵A的最大特征值

设二次型,(b>0)其中A的特征值之和为1, 特征值之积为-12.(1) 求a,b. (2) 用正交变换化为标准型

二次型, (1)求f(x1,x2,x3)的矩阵的特征值. (2)设f(x1,x2,x3)的规范形为. 求a

设二次型其中二次型矩阵A的特征值之和为1, 特征值之积-12.(1) 求a,b的值; (2) 求一正交变换把二次型化成标准型(需写出正交变换及标准型)

设二次型f(x1,x2,x3)=(a>0)的秩为2.(1)求a;(2)用正交变换法化二次型为标准形.

已知,二次型的秩为2. (Ⅰ)求实数a的值; (Ⅱ)求正交变换将二次型化为标准型

已知二次型f(x1,x2,3x)=x^TAx在正交变换x=Qy下的标准形为,且Q的第3列为.  (Ⅰ)求矩阵A;  (Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵.

设二次型的正惯性指数p=2,负惯性指数q=0,且可用可逆线性变换x=Cy将其化为二次型(1)求常数a; (2)求可逆线性变换矩阵C

三阶矩阵 为矩阵A的转置,已知r(ATA)=2,且二次型(1)求a; (2)求二次型对应的二次矩阵,并将二次型化为标准型,写出正交变换过程。

设二次型f(x1,x2,x3)在正交变换为x=py下的标准形为若Q=(e1-e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准型为( )。A.B.C.D.

二次型f(x1,x2,x3)=(λ-1)x12+λx22+(λ+1)x32,当满足( )时,是正定二次型。 A. λ>-1 B. λ>0 C. λ>1 D. λ≥1

若矩阵A的各阶顺序主子式均大于零,则该矩阵为()矩阵。A、正定B、正定二次型C、负定D、负定二次型

已知5阶对称阵A的特征值为-1,0,0,1,1,则二次型f=xTAx的秩等于().A、1B、3C、4D、5

单选题已知5阶对称阵A的特征值为-1,0,0,1,1,则二次型f=xTAx的秩等于().A1B3C4D5