问答题证明:奇数阶反对称矩阵的行列式为零。
问答题
证明:奇数阶反对称矩阵的行列式为零。
参考解析
解析:
暂无解析
相关考题:
设A,B为n阶矩阵,考虑以下命题:①若A,B为等价矩阵,则A,B的行向量组等价②若行列式.,则A,B为等价矩阵③若与都只有零解,则A,B为等价矩阵④若A,B为相似矩阵,则与的解空间的维数相同以上命题中正确的是( ).A.①③B.②④C.②③D.③④
下列结论中正确的是( )。A、 矩阵A的行秩与列秩可以不等B、 秩为r的矩阵中,所有r阶子式均不为零C、 若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零D、 秩为r的矩阵中,不存在等于零的r-1阶子式
下列命题正确的是( )。A.若三阶行列式D=0,那么D中有两行元素相同B.若三阶行列式D=0,那么D中有两行元素对应成比例C.若三阶行列式D中有6个元素为零,则D=0D.若三阶行列式D中有7个元素为零,则D=0
单选题下列结论中正确的是( )A矩阵A的行秩与列秩可以不等B秩为r的矩阵中,所有r阶子式均不为零C若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零D秩为r的矩阵中,不存在等于零的r-1阶子式
单选题对于二阶行列式其结果等于()的概率最大。A合数B素数C偶数D奇数