单选题设函数f(u)可导,y=f(x2),当自变量x在x=-1处取得增量Δx=-0.1时,相应的函数的增量Δy的线性主部为0.1,则f′(1)=( )。A-1B0.1C1D0.5
单选题
设函数f(u)可导,y=f(x2),当自变量x在x=-1处取得增量Δx=-0.1时,相应的函数的增量Δy的线性主部为0.1,则f′(1)=( )。
A
-1
B
0.1
C
1
D
0.5
参考解析
解析:
由dy=f′(x2)dx2=2xf′(x2)dx,则0.1=-2f′(1)(-0.1),即f′(1)=0.5。
由dy=f′(x2)dx2=2xf′(x2)dx,则0.1=-2f′(1)(-0.1),即f′(1)=0.5。
相关考题:
以下结论正确的是()。 A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.
设y=f(x)是(a,b)内的可导函数,x和x+Δx是(a,b)内的任意两点,则:A. Δy=f' (x)ΔxB.在x,x+Δx之间恰好有一点ξ,使Δy=f' (ξ)ΔxC.在x,x+Δx之间至少有一点ξ,使Δy=f' (ξ)ΔxD.在x,x+Δx之间任意一点ξ,使Δy=f' (ξ)Δx
设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为 A.AF^2(x)B.F(x)F(y)C.1-[1-F(x)]^2D.[1-F(x)][1-F(y)]
(Ⅰ)设函数u(x),ν(x)可导,利用导数定义证明[u(x)ν(x)]’=u’(x)ν(x)+u(x)ν’(x); (Ⅱ)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)…un(x),写出f(x)的求导公式.
设y=f(x)是(a,b)内的可导函数,x,x+△x是(a,b)内的任意两点,则:A. △y=f’(x)△xB.在x,x+△x之间恰好有一点ξ,使△y=f’(ξ)△xC.在x,x+△x之间至少存在一点ξ,使△y=f’(ξ)△xD.在x,x+△x之间的任意一点ξ,使△y=f’(ξ)△x
设函数y=f(x)的导函数,满足f′(一1)=0,当x<-l时,f′(x)<0;当x>-l时,f′(x)>0.则下列结论肯定正确的是( ).《》( )A.x=-1是驻点,但不是极值点B.x=-1不是驻点C.x=-1为极小值点D.x=-1为极大值点
函数在某点处的微分是:在这点处Δy=AΔx+o(Δx),当自变量增量趋于0时,()。A、函数变量的增量B、函数值与自变量增量的乘积C、函数变量的增量的线性主部D、函数变量的增量的高阶无穷小部分
单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=( )。A1/5B1/7C-1/7D-1/5
单选题(2009)设y=f(x)是(a,b)内的可导函数,x+△x是(a,b)内的任意两点,则:()A△y=f′(x)△xB在x,x+△x之间恰好有一点ξ,使△y=f′(ξ)△xC在x,x+△x之间至少有一点ξ,使△y=f′(ξ)△xD在x,x+△x之间任意一点ξ,使△y=f′(ξ)△x
单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=( )。A1B-1C1/7D-1/7
单选题若函数u=xy·f[(x+y)/xy],f(t)为可微函数,且满足x2∂u/∂x-y2∂u/∂y=G(x,y)u,则G(x,y)必等于( )。Ax+yBx-yCx2-y2D(x+y)2
单选题设P(x)是在区间[α,b]上的y=f(x)川的分段线性插值函数,以下条件中不是P(x)必须满足的条件为( )。AP(x)在[a,b]上连续BP(Xk)=YkCP(x)在[α,b]上可导DP(x)在各子区间上是线性函数
单选题设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为( )。AF2(x)BF(x)F(y)C1-[1-F(x)]2D[1-F(x)][1-F(y)]