单选题设函数f(u)可导,y=f(x2),当自变量x在x=-1处取得增量Δx=-0.1时,相应的函数的增量Δy的线性主部为0.1,则f′(1)=( )。A-1B0.1C1D0.5
单选题
设函数f(u)可导,y=f(x2),当自变量x在x=-1处取得增量Δx=-0.1时,相应的函数的增量Δy的线性主部为0.1,则f′(1)=( )。
A
-1
B
0.1
C
1
D
0.5
参考解析
解析:
由dy=f′(x2)dx2=2xf′(x2)dx,则0.1=-2f′(1)(-0.1),即f′(1)=0.5。
由dy=f′(x2)dx2=2xf′(x2)dx,则0.1=-2f′(1)(-0.1),即f′(1)=0.5。
相关考题:
以下结论正确的是()。 A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.
设关系模式R,其中U为属性集,F是U上的一组函数依赖,那么Armstrong公理系统的伪传递律是指()。 设关系模式R<U,F>,其中U为属性集,F是U上的一组函数依赖,那么Armstrong公理系统的伪传递律是指()。A.若X→Y,Y→Z为F所蕴涵,则X→Z为F所蕴涵B.若X→Y,X→Z,则X→YZ为F所蕴涵C.若X→Y,WY→Z,则XW→Z为F所蕴涵D.若X→Y为F所蕴涵,且Z?U,则XZ→YZ为F所蕴涵
设F是属性组U上的一组函数依赖,下列叙述正确的是A.若Y∈U则X→Y为F所逻辑蕴含B.若X∈U则X→Y为F所逻辑蕴含C.若X→Y为F所逻辑蕴含,且Z∈U则X→YZ为F所逻辑蕴含D.若X→Y及X→Z为F所逻辑蕴含,则X→Z为F所逻辑蕴含
设f(x),f'(x)为已知的连续函数,则微分方程y'十f'(x)y=f(x)f'(x)的通解是:A. y=f(x)+ce-f(x) B. y= f(x)ef(x) -ef(x) +cC. y=f(x)-1+ce-f(x) D. y=f(x)-1+cef(x)
设关系模式R<U,F>,其中U为属性集,F是U上的一组函数依赖,那么Armstrong公理系统的伪传递律是指( )。A.若X→Y,Y→Z为F所蕴涵,则X→Z为F所蕴涵B.若X→Y,X→Z,则X→YZ为F所蕴涵C.若X→Y,WY→Z,则XW→Z为F所蕴涵D.若X→Y为F所蕴涵,且Z?U,则XZ→YZ为F所蕴涵
设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为 A.AF^2(x)B.F(x)F(y)C.1-[1-F(x)]^2D.[1-F(x)][1-F(y)]
函数在某点处的微分是:在这点处Δy=AΔx+o(Δx),当自变量增量趋于0时,()。A、函数变量的增量B、函数值与自变量增量的乘积C、函数变量的增量的线性主部D、函数变量的增量的高阶无穷小部分
单选题设f(u,v)是二元可微函数,z=f(y/x,x/y),则x∂z/∂x-y∂z/∂y=( )。A-yf1′/x+xf2′/yB2(-yf1′/x+xf2′/y)C-yf1′/x+2xf2′/yD-yf1′/x+f2′/y
单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=( )。A1/5B1/7C-1/7D-1/5
单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=( )。A1B-1C1/7D-1/7
单选题若函数u=xy·f[(x+y)/xy],f(t)为可微函数,且满足x2∂u/∂x-y2∂u/∂y=G(x,y)u,则G(x,y)必等于( )。Ax+yBx-yCx2-y2D(x+y)2
单选题设f(x)在(-∞,+∞)内可导,且对任意x2>x1,都有f(x2)>f(x1),则正确的结论是( )。A对任意x,f′(x)>0B对任意x,f′(x)≤0C函数-f(-x)单调增加D函数f(-x)单调增加
单选题(2009)设y=f(x)是(a,b)内的可导函数,x+△x是(a,b)内的任意两点,则:()A△y=f′(x)△xB在x,x+△x之间恰好有一点ξ,使△y=f′(ξ)△xC在x,x+△x之间至少有一点ξ,使△y=f′(ξ)△xD在x,x+△x之间任意一点ξ,使△y=f′(ξ)△x
单选题设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为( )。AF2(x)BF(x)F(y)C1-[1-F(x)]2D[1-F(x)][1-F(y)]
单选题函数在某点处的微分是:在这点处Δy=AΔx+o(Δx),当自变量增量趋于0时,()。A函数变量的增量B函数值与自变量增量的乘积C函数变量的增量的线性主部D函数变量的增量的高阶无穷小部分