单选题设向量组Ⅰ:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组Ⅱ:α(→)1,α(→)2,…, α(→)m,β(→),其秩为s,则r=s是向量组Ⅰ与向量组Ⅱ等价的(  )。A充分非必要条件B必要非充分条件C充分必要条件D既非充分也非必要条件

单选题
设向量组Ⅰ:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组Ⅱ:α(→)1,α(→)2,…, α(→)m,β(→),其秩为s,则r=s是向量组Ⅰ与向量组Ⅱ等价的(  )。
A

充分非必要条件

B

必要非充分条件

C

充分必要条件

D

既非充分也非必要条件


参考解析

解析:
两向量组等价的充要条件是它们有相同的秩。

相关考题:

设向量组I:α1,α2,αr可由向量组Ⅱ:β1,β2,βs,线性表示,则(53)。A.当r<s时,向量组Ⅱ必线性相关.B.当r<s时,向量组Ⅱ必线性相关.C.当r<s时,向量组Ⅰ必线性相关.D.当r<s时,向量组Ⅰ必线性相关.

设矩阵,α1,α2,α3为线性无关的3维列向量组,则向量组Aα1,Aα2,Aα3的秩为_________.

设α1,α2,α3均为三维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的 A.A必要非充分条件B.充分非必要条件C.充分必要条件D.既非充分也非必要条件

设A为s×n矩阵且A的行向量组线性无关,K为r×s矩阵。证明:B=KA行无关的充分必要条件是R(K)=r

设a1,a2,a3均为3维向量,则对任意常数k,l,向量组线性无关是向量组a1,a2,a3线性无关的( )A.必要非充分条件B.充分非必要条件C.充分必要条件D.既非充分也非必要条件

设向量组的秩为r,则:A.该向量组所含向量的个数必大于rB.该向量级中任何r个向量必线性无关,任何r+1个向量必线性相关C.该向量组中有r个向量线性无关,有r+1个向量线性相关D.该向量组中有r个向量线性无关,任何r+1个向量必线性相关

设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则A.当rB.当r>s时,向量组Ⅱ必线性相关C.当rD.当r>s时,向量组Ⅰ必线性相关

设an>0(n=1,2,…),Sn=a1+a2+…+an,则数列{Sn}有界是数列{an}收敛的A.充分必要条件B.充分非必要条件C.必要非充分条件D.既非充分也非必要条件

设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。A.若向量组I线性无关.则r≤SB.若向量组I线性相关,则r>sC.若向量组Ⅱ线性无关,则r≤sD.若向量组Ⅱ线性相关,则r>s

设a,b为非零向量,λ∈R+,满足|a+b|=λ|a-b|,则“λ>1”是“a,b的夹角为锐角”的(  )A、充分不必要条件B、必要不充分条件C、充分必要条件D、既不充分也不必要条件

3维向量组A:α1,α2,…,αM线性无关的充分必要条件是().A、对任意一组不全为0的数k1,k2,…,kM,都有后B、向量组A中任意两个向量都线性无关C、向量组A是正交向量组D、αM不能由线性表示

单选题设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是(  ).A向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示B向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示C向量组α1,…,αm与向量组β1,…,βm等价D矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m

单选题设向量组α(→)1,α(→)2,…,α(→)r(Ⅰ)是向量组α(→)1,α(→)2,…,α(→)s(Ⅱ)的部分线性无关组,则(  )。A(Ⅰ)是(Ⅱ)的极大线性无关组Br(Ⅰ)=r(Ⅱ)C当(Ⅰ)中的向量均可由(Ⅱ)线性表示时,r(Ⅰ)=r(Ⅱ)D当(Ⅱ)中的向量均可由(Ⅰ)线性表示时,r(Ⅰ)=r(Ⅱ)

单选题设向量组(I)α(→)1,α(→)2,…,α(→)s,其秩为r1;向量组(Ⅱ)β(→)1,β(→)2,…,β(→)s,其秩为r2,且β(→)i(i=1,2,…,s)均可以由α(→)1,…,α(→)s线性表示,则(  )。A向量组α(→)1+β(→)1,α(→)2+β(→)2,…,α(→)s+β(→)s的秩为r1+r2B向量组α(→)1-β(→)1,α(→)2-β(→)2,…,α(→)s-β(→)s秩为rl-r2C向量组α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)s的秩为rl+r2D向量组α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)s的秩为rl

单选题设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是(  )。A向量组α(→)1,α(→)2,…,α(→)m可以由β(→)1,β(→)2,…,β(→)m线性表示B向量组β(→)1,β(→)2,…,β(→)m可以由α(→)1,α(→)2,…,α(→)m线性表示C向量组α(→)1,α(→)2,…,α(→)m与向量组β(→)1,β(→)2,…,β(→)m等价D矩阵A=(α(→)1,α(→)2,…,α(→)m)与矩阵B=(β(→)1,β(→)2,…,β(→)m)等价

单选题3维向量组A:α1,α2,…,αM线性无关的充分必要条件是().A对任意一组不全为0的数k1,k2,…,kM,都有后B向量组A中任意两个向量都线性无关C向量组A是正交向量组DαM不能由线性表示

单选题设向量组(Ⅰ):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示,则(  ).Ar<s时,向量组(Ⅱ)必线性相关Br>s时,向量组(Ⅱ)必线性相关Cr<s时,向量组(Ⅰ)必线性相关Dr>s时,向量组(Ⅰ)必线性相关

单选题设向量组I:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组II:α(→)1,α(→)2,…,α(→)m,β(→),其秩为s,则r=s是向量组I与向量组II等价的(  )。A充分非必要条件B必要非充分条件C充分必要条件D既非充分也非必要条件

问答题设向量组α1,α2,…,α5的秩为r>0,证明:(1)α1,α2,…,α5中任意r个线性无关的向量都构成它的一个极大线性无关组;(2)若α1,α2,…,α5中每个向量都可由其中某r个向量线性表示,则这r个向量必为α1,α2,…,α5的一个极大线性无关组。

单选题设α(→)1,α(→)2,…,α(→)s和β(→)1,β(→)2,…,β(→)t为两个n维向量组,且秩(α(→)1,α(→)2,…,α(→)s)=秩(β(→)1,β(→)2,…,β(→)t)=r,则(  )。A此两个向量组等价B秩(α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t)=rC当α(→)1,α(→)2,…,α(→)s可以由β(→)1,β(→)2,…,β(→)t线性表示时,此二向量组等价Ds=t时,二向量组等价

单选题设向量组的秩为r,则:()A该向量组所含向量的个数必大于rB该向量级中任何r个向量必线性无关,任何r+1个向量必线性相关C该向量组中有r个向量线性无关,有r+1个向量线性相关D该向量组中有r个向量线性无关,任何r+1个向量必线性相关

问答题设向量组α(→)1,α(→)2,…,α(→)s的秩为r>0,证明:  (1)α(→)1,α(→)2,…,α(→)s中任意r个线性无关的向量都构成它的一个极大线性无关组;  (2)若α(→)1,α(→)2,…,α(→)s中每个向量都可由其中某r个向量线性表示,则这r个向量必为α(→)1,α(→)2,…,α(→)s的一个极大线性无关组。

单选题设向量组α(→)1,α(→)2,…,α(→)s的秩为r,则(  )。A必定r<sB向量组中任意个数小于r的部分组线性无关C向量组中任意r个向量线性无关D若s>r,则向量组中任意r+l个向量必线性相关

单选题n维向量组α(→)1,α(→)2,…,α(→)s线性无关的充分条件是(  )。Aα(→)1,α(→)2,…,α(→)s中没有零向量B向量组的个数不大于维数,即s≤nCα(→)1,α(→)2,…,α(→)s中任意两个向量的分量不成比例D某向量β(→)可由α(→)1,α(→)2,…,α(→)s线性表示,且表示法唯一

单选题设向量组Ⅰ:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组Ⅱ:α(→)1,α(→)2,…,α(→)m,β(→),其秩为s,则r=s是向量组Ⅰ与向量组Ⅱ等价的(  )。A充分非必要条件B必要非充分条件C充分必要条件D既非充分也非必要条件