已知4元非齐次线性方程组Ax=b的系数矩阵的秩等于3,且η1,η2,η3是3个不同的解向量,则通解是( ).A.x=k1(η-η2)+η3B.x=k1η1+k2η2+η3C.x=k1η1+k2η2+k3η3D.x=k1(η+η2)+η3

已知4元非齐次线性方程组Ax=b的系数矩阵的秩等于3,且η1,η2,η3是3个不同的解向量,则通解是( ).

A.x=k1(η-η2)+η3
B.x=k1η1+k2η2+η3
C.x=k1η1+k2η2+k3η3
D.x=k1(η+η2)+η3

参考解析

解析:由n=4,r=3得s=1。ηη2是 Ax=0的基础解系

相关考题:

设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A、η1+η2是Ax=0的一个解B、(1/2)η1+(1/2)η2是Ax=b的一个解C、η1-η2是Ax=0的一个解D、2η1-η2是Ax=b的一个解

设A是4×6矩阵,r(A)=2,则齐次线性方程组Ax=0的基础解系中所含向量的个数是( )A.1 B.2C.3 D.4

设α1,α2是非齐次线性方程组Ax=b的解.则A(5α2-4α1)=_________.

对于有5个变量的齐次线性方程组AX=0,系数矩阵的秩r(A)=3,则其基础解析中向量个数为()。 A.2B.5C.3D.1

设A是4×5矩阵,ξ1,ξ2是齐次线性方程组Ax=0的基础解系,则下列结论正确的是( ).A.ξ1-ξ2,ξ1+2ξ2也是Ax=0的基础解系B.k1ξ1+k1ξ2是Ax=0的通解C.k1ξ1+ξ2是Ax=0的通解D.ξ1-ξ2,ξ2-ξ1也是Ax=0的基础解系

若A是m×n矩阵,且m≠n,则当R(A)=n时,非齐次线性方程组AX=b,有唯一解

设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解B.若Ax=0有非零解,则Ax=b有无穷多个解C.若Ax=b有无穷多个解,则Ax=0仅有零解D.若Ax=b有无穷多个解,则Ax=0有非零解

设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在.B.仅含一个非零解向量.C.含有两个线性无关的解向量.D.含有三个线性无关的解向量.

设β1,β2是线性方程组Ax=b的两个不同的解,α1、α2是导出组Ax=0的基础解系,k1,k2是任意常数,则Ax=b的通解是:

已知4元非齐次线性方程组Ax=b的系数矩阵的秩等于3,且η1,η2,η3是3个不同的解向量,则通解是( ).A.x=k1(η-η2)+η3B.x=k1η1+k2η2+η3C.x=k1η1+k2η2+k3η3D.x=k1(η+η2)+η3

设β1,β2是线性方程组Ax=b的两个不同的解,a1,a2是导出组Ax=0的基础解系,k1、k2是任意常数,则Ax=b的通解是:

设3阶实对称矩阵A的各行元素之和都为3,向量都是齐次线性方程组AX=0的解.① 求A的特征值和特征向量.② 求作正交矩阵Q和对角矩阵

取何值时,非齐次线性方程组 (1)有唯一解 (2)无解 (3)有无穷多个解? 并在无穷多个解时,求方程组的通解。

已知非齐次线性方程组 有3个线性无关的解. (Ⅰ)证明方程组系数矩阵A的秩; (Ⅱ)求的值及方程组的通解

问取何值时 非齐次线性方程组, (1)有唯一解 (2)无解 (3)有无穷多个解,并在无穷多个解时,求方程组的通解

设A=(α1,α2,α3)为3阶矩阵.若α1,α2线性无关,且α3=-α1+2α1,则线性方程组Ax=0的通解为________.

设,.  已知线性方程组Ax=b存在2个不同的解.  (Ⅰ)求λ,a;  (Ⅱ)求方程组Ax=b的通解.

已知是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=________.

已知al,a2,a3,a4是四维非零列向量,记A=(a1,a2,a3,a4),A+是A的伴随矩阵,若齐次方程组AX=0的基础解系为(1,0,-2,0)T,则AX=0的基础解系为( )。A、al a2B、a1 a3C、al a2 a3 D、a2 a3 a4

已知非齐次线性方程组有无限多个解,则t等于().A、-1B、1C、4D、-1或4

问答题设η(→)1,η(→)2,η(→)3,η(→)4是五元非齐次线性方程组AX(→)=b(→)的四个解,且秩r(A)=3,又设:η(→)1+η(→)2+η(→)3+η(→)4=(4,-8,-12,12,16)T,η(→)1+2η(→)2+2η(→)3+η(→)4=(6,18,-18,-30,12)T,2η(→)1+2η(→)2+η(→)3+η(→)4=(18,-30,-36,30,36)T,求方程组AX(→)=b(→)的通解。

单选题已知β(→)1β(→)2是非齐次方程组AX(→)=b(→)的两个不同的解,α(→)1α(→)2是其对应的齐次线性方程组的基础解系,k1、k2是任意常数,则方程组AX(→)=b(→)的通解必是(  )。Ak1α(→)1+k2(α(→)1+α(→)2)+(β(→)1-β(→)2)/2Bk1α(→)1+k2(α(→)1-α(→)2)+(β(→)1+β(→)2)/2Ck1α(→)1+k2(β(→)1+β(→)2)+(β(→)1-β(→)2)/2Dk1α(→)1+k2(β(→)1-β(→)2)+(β(→)1+β(→)2)/2

填空题已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是____。

单选题已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是(  )。Ak(0,1,1,1)T+(1,1,0,2)T/2Bk(0,1,-1,-1)T+(1,1,0,2)T/2Ck(0,1,1,-1)T+(1,1,0,2)T/2Dk(0,1,-1,1)T+(1,1,0,2)T/2

填空题设y1=3+x2,y2=3+x2+e-x是某二阶线性非齐次微分方程的两个特解,且相应的齐次方程有一个解为y3=x,则该方程的通解为____。

单选题已知n元非齐次线性方程组Ax=B,秩r(A)=n-2,α1,α2,α3为其线性无关的解向量,k1,k2为任意常数,则Ax=B的通解为(  )。[2014年真题]Ax=k1(α1-α2)+k2(α1+α3)+α1Bx=k1(α1-α3)+k2(α2+α3)+α1Cx=k1(α2-α1)+k2(α2-α3)+α1Dx=k1(α2-α3)+k2(α1+α2)+α1

单选题已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是(  )。Ak(0,1,-1,-1)T+(1,1,0,2)TBk(0,1,-1,-1)T+(1,1,0,2)T/2Ck(1,1,0,2)T+(0,1,-1,-1)TDk(1,1,0,2)T+(0,1,-1,-1)T/2

单选题已知非齐次线性方程组有无限多个解,则t等于().A-1B1C4D-1或4