设β1,β2是线性方程组Ax=b的两个不同的解,a1,a2是导出组Ax=0的基础解系,k1、k2是任意常数,则Ax=b的通解是:
设β1,β2是线性方程组Ax=b的两个不同的解,a1,a2是导出组Ax=0的基础解系,k1、k2是任意常数,则Ax=b的通解是:
参考解析
解析:
k1a1+k2(a1-a2)=k1a1+k2a1-k2a2=(k1+k2)a1-k2a2
设任意常数k1+k2=c,-k2=c2,则:
k1a1+k2(a1-a2)=c1a1+c2a2
从而选项C满足线性方程Ax=b的条件。
k1a1+k2(a1-a2)=k1a1+k2a1-k2a2=(k1+k2)a1-k2a2
设任意常数k1+k2=c,-k2=c2,则:
k1a1+k2(a1-a2)=c1a1+c2a2
从而选项C满足线性方程Ax=b的条件。
相关考题:
设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A、η1+η2是Ax=0的一个解B、(1/2)η1+(1/2)η2是Ax=b的一个解C、η1-η2是Ax=0的一个解D、2η1-η2是Ax=b的一个解
设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是() A、Ax=0只有零解B、Ax=0的基础解系含r(A)个解向量C、Ax=0的基础解系含n-r(A)个解向量D、Ax=0没有解
设A是4×5矩阵,ξ1,ξ2是齐次线性方程组Ax=0的基础解系,则下列结论正确的是( ).A.ξ1-ξ2,ξ1+2ξ2也是Ax=0的基础解系B.k1ξ1+k1ξ2是Ax=0的通解C.k1ξ1+ξ2是Ax=0的通解D.ξ1-ξ2,ξ2-ξ1也是Ax=0的基础解系
设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解B.若Ax=0有非零解,则Ax=b有无穷多个解C.若Ax=b有无穷多个解,则Ax=0仅有零解D.若Ax=b有无穷多个解,则Ax=0有非零解
设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在.B.仅含一个非零解向量.C.含有两个线性无关的解向量.D.含有三个线性无关的解向量.
设A是m×n阶矩阵,下列命题正确的是().A.若方程组AX=0只有零解,则方程组AX=b有唯一解B.若方程组AX=0有非零解,则方程组AX=b有无穷多个解C.若方程组AX=b无解,则方程组AX=0一定有非零解D.若方程组AX=b有无穷多个解,则方程组AX=0一定有非零解
已知al,a2,a3,a4是四维非零列向量,记A=(a1,a2,a3,a4),A+是A的伴随矩阵,若齐次方程组AX=0的基础解系为(1,0,-2,0)T,则AX=0的基础解系为( )。A、al a2B、a1 a3C、al a2 a3 D、a2 a3 a4
设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。A、①②B、①③C、②④D、③④
单选题已知β(→)1β(→)2是非齐次方程组AX(→)=b(→)的两个不同的解,α(→)1α(→)2是其对应的齐次线性方程组的基础解系,k1、k2是任意常数,则方程组AX(→)=b(→)的通解必是( )。Ak1α(→)1+k2(α(→)1+α(→)2)+(β(→)1-β(→)2)/2Bk1α(→)1+k2(α(→)1-α(→)2)+(β(→)1+β(→)2)/2Ck1α(→)1+k2(β(→)1+β(→)2)+(β(→)1-β(→)2)/2Dk1α(→)1+k2(β(→)1-β(→)2)+(β(→)1+β(→)2)/2
单选题设β1,β2是线性方程组Ax=b的两个不同的解,α1、α2是导出组Ax=0的基础解系,k1、k2是任意常数,则Ax=b的通解是( )。A(β1-β2)/2+k1α1+k2(α1-α2)Bα1+k1(β1-β2)+k2(α1-α2)C(β1+β2)/2+k1α1+k2(α1-α2)D(β1+β2)/2+k1α1+k2(β1-β2)
单选题设A是m×n矩阵,AX(→)=0(→)是AX(→)=b(→)的导出组,则下列结论正确的是( )。A若AX(→)=0(→)仅有零解,则AX(→)=b(→)有唯一解B若AX(→)=0(→)有非零解,则AX(→)=b(→)有无穷多解C若AX(→)=b(→)有无穷多解,则AX(→)=0(→)仅有零解D若AX(→)=b(→)有无穷多解,则AX(→)=0(→)有非零解
单选题已知n元非齐次线性方程组Ax=B,秩r(A)=n-2,α1,α2,α3为其线性无关的解向量,k1,k2为任意常数,则Ax=B的通解为( )。[2014年真题]Ax=k1(α1-α2)+k2(α1+α3)+α1Bx=k1(α1-α3)+k2(α2+α3)+α1Cx=k1(α2-α1)+k2(α2-α3)+α1Dx=k1(α2-α3)+k2(α1+α2)+α1