以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是:A. y''-2y'-3y=0B. y''+2y'-3y=0C. y''-3y'+2y=0D. y''+2y'+y=0
以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是:
A. y''-2y'-3y=0
B. y''+2y'-3y=0
C. y''-3y'+2y=0
D. y''+2y'+y=0
B. y''+2y'-3y=0
C. y''-3y'+2y=0
D. y''+2y'+y=0
参考解析
解析:提示 y''-3y'+2y=0→r2+2r-3 = 0→r1=-3,r2=1,所以y1=ex,y2=e-3x,选项B的特解满足条件。
相关考题:
设非齐次线性微分方程y′+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程通解是( )。A.C[y1(x)-y2(x)]B.y1(x)+C[y1(x)-y2(x)]C.C[y1(x)+y2(x)]D.y1(x)+C[y1(x)+y2(x)]
单选题以y1=ex,y2=e2xcosx为特解的最低阶数的常系数线性齐次方程为( )。Ay‴-5y″-9y′-5y=0By‴-5y″-5y′-5y=0Cy‴-5y″+9y′-5y=0Dy‴-5y″+5y′-5y=0
单选题具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性方程是( )。Ay‴-y″-y′+y=0By‴+y″-y′-y=0Cy‴-6y″+11y′-6y=0Dy‴-2y″-y′+2y=0
单选题以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是( )。[2012年真题]Ay″-2y′-3y=0By″+2y′-3y=0Cy″-3y′+2y=0Dy″-2y′-3y=0
单选题设非齐次线性微分方程y′+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是( )。AC[y1(x)-y2(x)]By1(x)+C[y1(x)-y2(x)]CC[y1(x)+y2(x)]Dy1(x)+C[y1(x)+y2(x)]
问答题设y1=x,y2=x+e2x,y3=x(1+e2x)是二阶常系数线性非齐次方程的特解,求该方程及其通解。