矩阵的特征值为( )。A、λ1=λ2=1,λ3=2B、λ1=1,λ2=λ3=2C、λ1=1,λ2=2,λ3=3D、λ1=λ2=1,λ3=3

矩阵

的特征值为( )。


A、λ1=λ2=1,λ3=2
B、λ1=1,λ2=λ3=2
C、λ1=1,λ2=2,λ3=3
D、λ1=λ2=1,λ3=3

参考解析

解析:A的特征多项式 特征值为λ1=λ2=1,λ3=2

相关考题:

三阶矩阵A的特征值为-2,1,3,则下列矩阵中为非奇异矩阵的是(). A.2E-AB.2E+AC.E-AD.A-3E

已知二阶实对称矩阵A的特征值是1,A的对应于特征值1的特征向量为(1,-1)T,若|A|=-1,则A的另一个特征值及其对应的特征向量是(  )。

N阶实对称矩阵A正定的充分必要条件是().A.A无负特征值B.A是满秩矩阵C.A的每个特征值都是单值D.A^-1是正定矩阵

设是非奇异矩阵A的特征值,则矩阵(2A3)- 1有一个特征值为:A.3B.4C.D.1

矩阵的特征值是:

设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().A.矩阵A不可逆B.矩阵A的迹为零C.特征值-1,1对应的特征向量正交D.方程组AX=0的基础解系含有一个线性无关的解向量

已知4阶矩阵A~B,A的特征值为3,4,5,6,E为4阶单位矩阵,则|B-E|=( )A.20B.60C.120D.360

设A是n阶矩阵,且Ak=O(k为正整数),则( )。A.A一定是零矩阵B.A有不为0的特征值C.A的特征值全为0D.A有n个线性无关的特征向量

若A是实对称矩阵,则A为正定矩阵的充要条件是A的特征值全为正

设A为n阶实对称矩阵,下列结论不正确的是().A.矩阵A与单位矩阵E合同B.矩阵A的特征值都是实数C.存在可逆矩阵P,使P^-1AP为对角阵D.存在正交阵Q,使Q^TAQ为对角阵

已知n阶可逆矩阵A的特征值为λ0,则矩阵(2A)-1的特征值是:

矩阵对应特征值λ=-1的全部特征向量为( )。

设λ=1/2是非奇异矩阵A的特征值,则矩阵(2A3)-1有一个特征值为:A. 3 B.4 C.1/4 D. 1

矩阵的非零特征值是________.

设3阶实对称矩阵A的特征值为-1,1,1,与特征值-1对应的特征向量x=(-1,1,1)′,求A

已知3阶矩阵A的特征值为1,2,-3,求.

设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.

证明: 二次型在时的最大值为矩阵A的最大特征值

设A是三阶实对称矩阵,r(A)=1,A^2-3A=O,设(1,1,-1)t为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.

设A为m×n阶实矩阵,且r(A)=n.证明:A^TA的特征值全大于零.

设矩阵A=  (1)已知A的一个特征值为3,试求y;  (2)求可逆矩阵P,使(AP)^T(AP)为对角矩阵.

设A为三阶实对称矩阵,A的秩为2,且  (Ⅰ)求A的所有特征值与特征向量;  (Ⅱ)求矩阵A.

若三维列向量α,β满足α^Tβ=2,其中α为α的转置,则矩阵βα^T的非零特征值为_____________.

设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A

设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是( )。A. α是矩阵-2A的属于特征值-2λ的特征向量D. α是矩阵AT的属于特征值λ的特征向量

设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A、α是矩阵-2A的属于特征值-2λ的特征向量B、α是矩阵的属于特征值的特征向量C、α是矩阵A*的属于特征值的特征向量D、α是矩阵AT的属于特征值λ的特征向量

单选题设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。Aα是矩阵-2A的属于特征值-2λ的特征向量Bα是矩阵的属于特征值的特征向量Cα是矩阵A*的属于特征值的特征向量Dα是矩阵AT的属于特征值λ的特征向量

单选题已知n阶可逆矩阵A的特征值为λ0,则矩阵(2A)-1的特征值是(  )。[2012年真题]A2/λ0Bλ0/2C1/(2λ0)D2λ0