若三维列向量α,β满足α^Tβ=2,其中α为α的转置,则矩阵βα^T的非零特征值为_____________.

若三维列向量α,β满足α^Tβ=2,其中α为α的转置,则矩阵βα^T的非零特征值为_____________.


参考解析

解析:

相关考题:

下列命题不正确的是() A、转置运算不改变方阵A的行列式值和秩B、若mC、已知同阶方阵A,B和C满足AB=AC,若A是非奇异阵,则B=CD、若矩阵A的列向量线性相关,则A的行向量也线性相关

阅读以下说明和C函数,将应填入(n)处的字句写在对应栏内。[说明]若一个矩阵中的非零元素数目很少且分布没有规律,则称之为稀疏矩阵。对m行n列的稀疏矩阵M,进行转置运算后得到n行m列的矩阵MT,如图3-1所示为了压缩稀疏矩阵的存储空间,用三元组(即元素所在的行号、列号和元素值、表示稀疏矩阵中的一个非零元素,再用一维数组逐行存储稀疏矩阵中的所有非零元素也称为三元组顺序表)。例如,图3-1所示的矩阵M相应的三元组顺序表如表3-1所示。其转置矩阵MT的三元组顺序表如表3-2所示。函数TransposeMatrix(Matrix M)的功能是对用三元组顺序表表示的稀疏矩阵M进行转置运算。对M实施转置运算时,为了将M中的每个非零元素直接存入其转置矩阵MT三元组顺序表的相应位置,需先计算M中每一列非零元素的数目(即MT中每一行非零元素的数目),并记录在向量num中;然后根据以下关系,计算出矩阵M中每列的第一个非零元素在转置矩阵MT三元组顺序表中的位置:cpot[0]=0cpot[j]=cpot[j-1]+num[j-1]) /*j为列号*/类型ElemType,Triple和Matrix定义如下:typedef int ElemType;typedef struct{ /*三元组类型*/int r,c; /*矩阵元素的行号、列号*/ElemType e; /*矩阵元素的值*/}Triple;typedef struct{ /*矩阵的元组三元组顺序表存储结构*/int rows,cols,elements; /*矩阵的行数、列数和非零元素数目*/Triple data[MAXSIZE];}Matrix;[C语言函数]int TransposeMatrix(Matrix M){int j,q,t;int *num, *cpot;Matrix MT; /*MT是M的转置矩阵*/num=(int*)malloc(M.cols*sizeof(int));cpot=(int*)malloc(M.cols*sizeof(int));if(!num ||cpot)return ERROR;MT.rows=(1); /*设置转置矩阵MT行数、列数和非零元素数目*/MT.cols=(2);MT.elements=M.elements;if(M.elements>0){for (q=0 ; q<M. cols ; q++)num[q]=0;for (t=0; t<M.elements;++t) /*计算矩阵M中每一列非零元素数目*/num [M.data[t].c]++;/*计算矩阵M中每列第一个非零元素在其转置矩阵三元组顺序表中的位置*/(3);for(j=1;j<M.cols;j++)cpot[j]=(4);/*以下代码完成转置矩阵MT三元组顺序表元素的设置*/for(t=0;t<M.elements;t++){j=(5); /*取矩阵M的一个非零元素的列号存入j*//*q为该非零元素在转置矩阵MT三元组顺序表中的位置(下标)*/q=cpot[j];MT.data[q].r=M.data[t].c;MT.data[q].c=M.data[t].r;MT.data[q].e=M.data[t].e;++cpot[j]; /*计算M中第j列的下一个非零元素的目的位置*/}/*for*/} /*if*/free(num); free(cpot);/*此处输出矩阵元素,代码省略*/return OK;}/*TransposeMatrix*/

试题三(共15分)阅读以下说明和C 函数,将应填入(n) 处的字句写在答题纸的对应栏内。[说明]若一个矩阵中的非零元素数目很少且分布没有规律,则称之为稀疏矩阵。对于m行n 列的稀疏矩阵M,进行转置运算后得到n 行m列的矩阵MT,如图3-1 所示。函数TransposeMatrix(Matrix M)的功能是对用三元组顺序表表示的稀疏矩阵M 进行转置运算。对 M 实施转置运算时,为了将M 中的每个非零元素直接存入其转置矩阵MT 三元组顺序表的相应位置,需先计算M 中每一列非零元素的数目(即MT 中每一行非零元素的数目),并记录在向量num 中;然后根据以下关系,计算出矩阵M 中每列的第一个非零元素在转置矩阵MT 三元组顺序表中的位置:cpot[0] = 0cpot[j] = cpot[j-1] + num[j-1] /* j 为列号 */类型ElemType、Triple 和Matrix 定义如下:typedef int ElemType;typedef struct { /* 三元组类型 */int r,c; /* 矩阵元素的行号、列号*/ElemType e; /* 矩阵元素的值*/}Triple;typedef struct { /* 矩阵的三元组顺序表存储结构 */int rows,cols,elements; /* 矩阵的行数、列数和非零元素数目 */Triple data[MAXSIZE];}Matrix;[C函数]int TransposeMatrix(Matrix M){int j,q,t;int *num, *cpot;Matrix MT; /* MT 是M的转置矩阵 */num = (int *)malloc(M.cols*sizeof(int));cpot = (int *)malloc(M.cols*sizeof(int));if (!num || !cpot)return ERROR;MT.rows = (1) ; /* 设置转置矩阵MT行数、列数和非零元数目*/MT.cols = (2) ;MT.elements = M.elements;if (M.elements 0) {for(q = 0; q M.cols; q++)num[q] = 0;for(t = 0; t M.elements; ++t) /* 计算矩阵M 中每一列非零元素数目*/num[M.data[t].c]++;/* 计算矩阵M中每列第一个非零元素在其转置矩阵三元组顺序表中的位置*/(3) ;for(j = 1;j M.cols; j++)cpot[j] = (4) ;/* 以下代码完成转置矩阵MT三元组顺序表元素的设置 */for(t = 0; t M.elements;t++){j = (5) ; /* 取矩阵M 的一个非零元素的列号存入j *//* q 为该非零元素在转置矩阵MT 三元组顺序表中的位置(下标)*/q = cpot[j];MT.data[q].r = M.data[t].c;MT.data[q].c = M.data[t].r;MT.data[q].e = M.data[t].e;++cpot[j]; /* 计算M 中第j列的下一个非零元素的目的位置 */}/* for */}/* if */free(num); free(cpot);/*此处输出矩阵元素,代码省略*/return OK;}/* TransposeMatrix */

设α,β为四维非零列向量,且α⊥β,令A=αβ^T,则A的线性无关特征向量个数为().A.1B.2C.3D.4

已知二阶实对称矩阵A的特征值是1,A的对应于特征值1的特征向量为(1,-1)T,若|A|=-1,则A的另一个特征值及其对应的特征向量是(  )。

已知,P为三阶非零矩阵,且满足PQ=O,则A.t=6时P的秩必为1B.t-6时P的秩必为2C.t≠6时P的秩必为1D.t≠6时P的秩必为2

设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是(  )。A、矩阵A的任意两个列向量线性相关B、矩阵A的任意两个列向量线性无关C、矩阵A的任一列向量是其余列向量的线性组合D、矩阵A必有一个列向量是其余列向量的线性组合

已知三维列向量αβ满足αTβ=3,设3阶矩阵A=βαT,则:A. β是A的属于特征值0的特征向量B. α是A的属于特征值0的特征向量C. β是A的属于特征值3的特征向量D. α是A的属于特征值3的特征向量

设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β使得A=αβT.

设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,  对应特征向量为(-1,0,1)^T.  (1)求A的其他特征值与特征向量;  (2)求A.

设α,β为三维非零列向量,(α,β)=3,A=αβ^T,则A的特征值为_______.

若矩阵A=,B是三阶非零矩阵,满足AB=O,则t=_______.

设A是三阶实对称矩阵,r(A)=1,A^2-3A=O,设(1,1,-1)t为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.

设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ^2是λ^3的特征值,X为特征向量,若A^2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.

设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________.

设α,β为三维列向量,矩阵A=αα^T+ββ^T,其中α^T,β^T分别是α,β的转置.证明:  (Ⅰ)秩r(A)≤2;  (Ⅱ)若α,β线性相关,则秩r(A)

设α为三维单位列向量,E为三阶单位矩阵,则矩阵E-αα^T的秩为________.

设A为3阶矩阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足

已知三维列向量a,β满足aTβ,设3阶矩阵A=βaT,则:A. β是A的属于特征值0的特征向量B. a是A的属于特征值0的特征向量C. β是A的属于特征值3的特征向量D. a是A的属于特征值3的特征向量

已知λ=2是三阶矩阵A的一个特征值,α1,α2是A的属于λ=2的特征向量。若α1=(1,2,0)T,α2=(1,0,1)T,向量β=(-1,2,-2)T,则Aβ等于()。A、(2,2,1)TB、(-1,2,_2)TC、(-2,4,-4)TD、(-2,-4,4)

已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。A、β是A的属于特征值0的特征向量B、α是A的属于特征值0的特征向量C、β是A的属于特征值3的特征向量D、α是A的属于特征值3的特征向量

单选题设A是三阶矩阵,α1=(1,0,1)T,α2=(1,1,0)T是A的属于特征值1的特征向量,α3=(0,1,2)T是A的属于特征值-1的特征向量,则:()Aα1-α2是A的属于特征值1的特征向量Bα1-α3是A的属于特征值1的特征向量Cα1-α3是A的属于特征值2的特征向量Dα1+α2+α3是A的属于特征值1的特征向量

单选题设n维行向量α=(1/2,0,…,0,1/2),矩阵A=E-αTα,B=E+2αTα,其中E为n阶单位矩阵,则AB等于(  )。AOB-ECEDE+αTα

问答题证明:  (1)若α(→)1,α(→)2,…,α(→)r是A的属于特征值λ的特征向量,则α(→)1,α(→)2,…,α(→)r的任一个非零线性组合也是A的属于λ的特征向量。  (2)矩阵可逆的充分必要条件是它的特征值都不为0。

单选题已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。Aβ是A的属于特征值0的特征向量Bα是A的属于特征值0的特征向量Cβ是A的属于特征值3的特征向量Dα是A的属于特征值3的特征向量

问答题设A=E-α(→)α(→)T,其中E是n阶单位矩阵,α(→)是n维非零列向量,α(→)T是α(→)的转置。证明:  (1)A2=A的充要条件是α(→)Tα(→)=1;  (2)当α(→)Tα(→)=1时,A是不可逆矩阵。

单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=(  )。A-1B1C-2D2