罗尔定理:设函数(x)满足条件:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3)(a)=(b),则在(a,b)内至少存在一点ξ,使得,′(ξ)=0。证明这个定理并说明其几何意义。
罗尔定理:设函数(x)满足条件:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3)(a)=(b),则在(a,b)内至少存在一点ξ,使得,′(ξ)=0。证明这个定理并说明其几何意义。
参考解析
解析:
相关考题:
若函数y=f(x)满足条件(63),则在(a,B)内至少存在一点c(a<c<B),使得f′(C)=(f(B)-f(A))/(b-A)成立。A.在(a,B)内连续B.在(a,B)内可导;C.在(a,B)内连续,在(a,B)内可导;D.在[a,B]内连续,在(a,B)内可导。
若函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内满足f ′(x0)=0的点x0( )。A.必存在且只有一个B.至少存在一个C.不一定存在D.不存在
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.
设f(x)为开区间(a,b)上的可导函数,则下列命题正确的是( )。A.f(x)在(a,b)上必有最大值B.f(x)在(a,b)上必一致连续C.f(x)在(a,b)上必有D.f(x)在(a,b)上必连续
设?(x)为开区间(a,b)上的可导函数,则下列命题正确的是( )A.(x)在(a,b)上必有最大值B.(x)在(a,b)上必一致连续C.(x)在(a,b)上必有界D.(x)在(a,b)上必连续
问答题设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,且存在相等的最大值。若f(a)=g(a),f(b)=g(b),证明: (1)存在η∈(a,b)使f(η)=g(η); (2)存在ξ∈(a,b)使f″(ξ)=g″(ξ)。
单选题设P(x)是在区间[α,b]上的y=f(x)川的分段线性插值函数,以下条件中不是P(x)必须满足的条件为( )。AP(x)在[a,b]上连续BP(Xk)=YkCP(x)在[α,b]上可导DP(x)在各子区间上是线性函数
单选题设函数f(x)在区间[1,+∞)内二阶可导,且满足条件f(1)=f′(1)=0,x>1时f″(x)<0,则g(x)=f(x)/x在(1,+∞)内( )。A曲线是向上凹的B曲线是向上凸的C单调减少D单调增加
单选题函数f(x)在[0,+∞)上连续,在(0,+∞)内可导,且f(0)<0,f′(x)≥k>0,则在(0,+∞)内f(x)( )。A没有零点B至少有一个零点C只有一个零点D有无零点不能确定
问答题设f(x)在闭区间[0,c]上连续,其导数f′(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中a,b满足条件0≤a≤b≤a+b≤c。