设函数在(a,b)内连续,则在(a,b)内()。A、f(x)必有界B、f(x)必可导C、f(x)必存在原函数D、D.必存在一点ξ∈(a,,使f(ξ)=0
设函数在(a,b)内连续,则在(a,b)内()。
- A、f(x)必有界
- B、f(x)必可导
- C、f(x)必存在原函数
- D、D.必存在一点ξ∈(a,,使f(ξ)=0
相关考题:
以下结论正确的是()。 A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.
设f(x)为连续函数,F(x)是f(x)的原函数,则( )。(A) 当f(x)是奇函数时,F(x)必为偶函数(B) 当f(x)是偶函数时,F(x)必为奇函数(C) 当f(x)是周期函数时,F(x)必为周期函数(D) 当f(x)是单增函数时,F(x)必为单增函数(E) 当f(x)是单减函数时,F(x)必为单减函数
请教:2008 年春季中国精算师资格考试-01数学基础(一)第1大题第1小题如何解答?【题目描述】1.设f(x)为连续函数,F(x)是f(x)的原函数,则( )。(A) 当f(x)是奇函数时,F(x)必为偶函数(B) 当f(x)是偶函数时,F(x)必为奇函数(C) 当f(x)是周期函数时,F(x)必为周期函数(D) 当f(x)是单增函数时,F(x)必为单增函数(E) 当f(x)是单减函数时,F(x)必为单减函数
若函数y=f(x)满足条件(63),则在(a,B)内至少存在一点c(a<c<B),使得f′(C)=(f(B)-f(A))/(b-A)成立。A.在(a,B)内连续B.在(a,B)内可导;C.在(a,B)内连续,在(a,B)内可导;D.在[a,B]内连续,在(a,B)内可导。
设函数f(x)在(-∞,+∞)上是奇函数,在(0,+∞)内有f'(x)<0, f''(x)>0,则在(-∞,0)内必有:A. f'>0, f''>0 B.f'<0, f''<0C. f'<0, f''>0 D. f'>0, f''<0
设函数 f (x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有 f ' (x) >0, f '' (x) >0,则在(- ∞ ,0)内必有:(A) f ' > 0, f '' > 0 (B) f ' 0(C) f ' > 0, f ''
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有:A. f'(x)>0, f''(x)>0 B.f'(x)<0, f''(x)>0C. f'(x)>0, f''(x)<0 D. f'(x)<0, f''(x)<0
下列命题正确的是()A.函数f(x)的导数不存在的点,一定不是f(x)的极值点B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0D.若函数f(x)在点x0处连续,则f'(x0)一定存在
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.
若函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内满足f ′(x0)=0的点x0( )。A.必存在且只有一个B.至少存在一个C.不一定存在D.不存在
设y=f(x)是(a,b)内的可导函数,x,x+△x是(a,b)内的任意两点,则:A. △y=f’(x)△xB.在x,x+△x之间恰好有一点ξ,使△y=f’(ξ)△xC.在x,x+△x之间至少存在一点ξ,使△y=f’(ξ)△xD.在x,x+△x之间的任意一点ξ,使△y=f’(ξ)△x
下列命题中,正确的是( ).A.单调函数的导函数必定为单调函数B.设f(x)为单调函数,则f(x)也为单调函数C.设f(x)在(a,b)内只有一个驻点xo,则此xo必为f(x)的极值点D.设f(x)在(a,b)内可导且只有一个极值点xo,f(xo)=0
设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )。A.(x-a)[f(x)-f(a)]≥0B.(x-a)[f(x)-f(a)]≤0C.D.
设f(x)为开区间(a,b)上的可导函数,则下列命题正确的是( )。A.f(x)在(a,b)上必有最大值B.f(x)在(a,b)上必一致连续C.f(x)在(a,b)上必有D.f(x)在(a,b)上必连续
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f''(x)>0,则在(-∞,0)内必有( )。A. f'(x)>0,f''(x)>0 B. f(x) 0C. f'(x)>0,f''(x)
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)0,f"(x)0,则在(-∞,0)内必有()。A、f'(x)0,f"(x)0B、f'(x)0,f"(x)0C、f'(x)O,f"(x)0D、f'(x)0,f"(x)0
问答题设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,且存在相等的最大值。若f(a)=g(a),f(b)=g(b),证明: (1)存在η∈(a,b)使f(η)=g(η); (2)存在ξ∈(a,b)使f″(ξ)=g″(ξ)。
单选题设函数在(a,b)内连续,则在(a,b)内()。Af(x)必有界Bf(x)必可导Cf(x)必存在原函数DD.必存在一点ξ∈(a,,使f(ξ)=0