单选题函数f(x)在[0,+∞)上连续,在(0,+∞)内可导,且f(0)<0,f′(x)≥k>0,则在(0,+∞)内f(x)(  )。A没有零点B至少有一个零点C只有一个零点D有无零点不能确定

单选题
函数f(x)在[0,+∞)上连续,在(0,+∞)内可导,且f(0)<0,f′(x)≥k>0,则在(0,+∞)内f(x)(  )。
A

没有零点

B

至少有一个零点

C

只有一个零点

D

有无零点不能确定


参考解析

解析:
由f′(x)≥k>0知f(x)单调增加,又f(0)<0,且f(x)在[0,+∞)上连续,在(0,+∞)内可导,故f(x)只有一个零点。

相关考题:

设函数y=f(x)在点x0处可导,且f′(x)0,曲线y=f(x)则在点(x0,f(x0))处的切线的倾斜角为()。 A、0B、π/2C、锐角D、钝角

设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0B.f(a)=0且f′(a)≠0C.f(a)>0且f′(a)>D.f(a)<0且f′(a)<

设函数 f (x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有 f ' (x) >0, f '' (x) >0,则在(- ∞ ,0)内必有:(A) f ' > 0, f '' > 0 (B) f ' 0(C) f ' > 0, f ''

设f(x)在闭区间[0,1]上连续,在(0,1)内可导,且f(0)=0,

(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.

A. f(x)在[0,1]上至少有两个零点B.f'(x)在[0,1]上至少有一个零点C.f''(x)在[0,1]上至少有一个零点D.f'(x)在[0,1]内不变号

设函数f(x)在(-∞,+∞)上是奇函数,在(0,+∞)内有f'(x)<0, f''(x)>0,则在(-∞,0)内必有:A. f'>0, f''>0B.f'<0, f''<0C. f'<0, f''>0D. f'>0, f''<0

设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有:A. f'(x)>0, f''(x)>0B.f'(x)<0, f''(x)>0C. f'(x)>0, f''(x)<0D. f'(x)<0, f''(x)<0

若函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内满足f ′(x0)=0的点x0(  )。A.必存在且只有一个B.至少存在一个C.不一定存在D.不存在

若f(-x)=f(x),且在(0,+∞)内f′(x)>0,f″(x)<0,则f(x)在(-∞,0)内( )。《》( )A.f′(x)<0,f″(x)<0B.f′(x)<0,f″(x)>0C.f′(x)>0,f″(x)<0D.f′(x)>0,f″(x)>0

若a,6是方程f(x)=0的两个相异的实根,f(x)在[a,b]上连续,且在(a,b)内可导,则方程f(x)=0在(a,b)内( ).A.只有一个根B.至少有一个根C.没有根D.以上结论都不对

设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f''(x)>0,则在(-∞,0)内必有( )。A. f'(x)>0,f''(x)>0 B. f(x) 0C. f'(x)>0,f''(x)

设函数f(x)在[0,b]连续,在(a,b)可导,f′(x)>0.若f(a)·f(b)A.不存在零点B.存在唯一零点C.存在极大值点D.存在极小值点

A.F(x)在x=0点不连续B.F(x)在(-∞,+∞)内连续,在x=0点不可导C.F(x)在(-∞,+∞)内可导,且满足F′(x)=f(x)D.F(x)在(-∞,+∞)内可导,但不一定满足F′(x)=f(x)

若f(x)=-f(-x),在(0,+∞)内f′(x)>0,f″(x)>0,则在(-∞,0)内( )《》( )A.f′(x)<f″(x)<0B.f′(x)<f″(x)>0C.f′(x)>f″(x)<0D.f′(x)>f″(x)>0

若a,b是方程f(x)=0的两个相异的实根,f(x)在[a,b]上连续,且在(a,b)内可导,则方程f’(x)=0在(a,b)内().A、只有一个根B、至少有一个根C、没有根D、以上结论都不对

设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)0,f"(x)0,则在(-∞,0)内必有()。A、f'(x)0,f"(x)0B、f'(x)0,f"(x)0C、f'(x)O,f"(x)0D、f'(x)0,f"(x)0

问答题设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f′(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在(a,a-f(a)/k)内有唯一实根。

单选题(2008)设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f′(x)0,f″(x)0则在(-∞,0)内必有:()Af′(x)0,f″(x)0Bf′(x)0,f″(x)0Cf′(x)0,f″(x)0Df′(x)0,f″(x)0

问答题设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f′(x)≠1,证明在(0,1)内有且仅有一个x,使得f(x)=x。

单选题设f(x)=-f(-x),x∈(-∞,+∞),且在(0,+∞)内f′(x)>0,f″(x)<0,则在(-∞,0)内(  )。Af′(x)>0,f″(x)>0Bf′(x)>0,f″(x)<0Cf′(x)<0,f″(x)>0Df′(x)<0,f″(x)<0

单选题若f(x)=-f(-x),在(0,+∞)内f′(x)>0,f″(x)>0,则在(-∞,0)内(  )。Af′(x)<0,f″(x)<0Bf′(x)<0,f″(x)>0Cf′(x)>0,f″(x)<0Df′(x)>0,f″(x)>0

问答题设在[0,+∞]上函数f(x)有连续导数,且f′(x)≥k>0,f(0)<0,证明:在(0,+∞]内有且仅有一个零点。

单选题若a,b是方程f(x)=0的两个相异的实根,f(x)在[a,b]上连续,且在(a,b)内可导,则方程f’(x)=0在(a,b)内().A只有一个根B至少有一个根C没有根D以上结论都不对

问答题设函数f(x),g(x)在[a,b]上连续,在(a,b)内可导,且对于(a,b)内一切x有f′(x)g(x)-f(x)g′(x)≠0。证明:如果f(x)在(a,b)内有两个零点,则介于两个零点之间,g(x)至少有一个零点。

单选题若f(x)在区间[a,+∞)上二阶可导,且f(a)=A>0,f′(a)<0,f″(x)<0(x>a),则方程f(x)=0在(a,+∞)内(  )。A没有实根B有两个实根C有无穷多个实根D有且仅有一个实根

单选题函数f(x)在[0,+∞)上连续,在(0,+∞)内可导,且f(0)<0,f′(x)≥k>0,则在(0,+∞)内f(x)(  )。A没有零点B至少有一个零点C只有一个零点D有无零点不能确定

单选题设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)0,f"(x)0,则在(-∞,0)内必有()。Af'(x)0,f"(x)0Bf'(x)0,f"(x)0Cf'(x)O,f"(x)0Df'(x)0,f"(x)0