设P为n阶正交矩阵,x是一个n维列向量,且||x||=3,则||Px||=A.3B.-3C.1D.-1
设P为n阶正交矩阵,x是一个n维列向量,且||x||=3,则||Px||=
A.3
B.-3
C.1
D.-1
参考答案和解析
矩阵A=(aij)由于对任意的n维实列向量a成立,所以要在a上面做文章 令a=(0,……,1,……0)(a中第i个元素是1,其余的是0),代入可知aii=0 令a=(……,1,……,1,.)(a中第i个和第j个元素是1,其余的是0)(i≠j),代入可得:aii+aji+aij+ajj=0 aii=ajj=0,故aij+aji=0 所以(aij)+a(ji)=0 即A+A^T=0,A=-A^T 从而A是反对称矩阵
相关考题:
设A为n阶实对称矩阵,则(). A.A的n个特征向量两两正交B.A的n个特征向量组成单位正交向量组C.A的k重特征值λ0,有r(λ0E-A)=n-kD.A的k重特征值λ。,有r(λ0E-A)=k
设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )A.矩阵C的行向量组与矩阵A的行向量组等价B.矩阵C的列向量组与矩阵A的列向量组等价C.矩阵C的行向量组与矩阵B的行向量组等价D.矩阵C的行向量组与矩阵B的列向量组等价
设A,B,C均为n阶矩阵,若AB=C,且B可逆,则 A.A矩阵C的行向量组与矩阵A的行向量组等价B.矩阵C的列向量组与矩阵A的列向量组等价C.矩阵C的行向量组与矩阵B的行向量组等价D.矩阵C的列向量组与矩阵B的列向量组等价
单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=( )。A4B2C-1D1
问答题设A为n阶方阵,若对任意n维向量X=(x1,x2,…,xn)T都有AX=0.证明:A=0.