设平面区域D由曲线y=1/x及直线y=0,x=1,x=е2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)的联合密度函数为()。
设X、Y的联合分布函数是F(x,y),则F(+∞,y)等于:() A、0;B、1;C、Y的分布函数;D、Y的密度函数。
二维连续性随机变量(X,Y)联合概率密度f(x,y)满足f(x,y)0。()
设二维随机变量(X,Y)的联合密度函数为f(x,y)= (1)求随机变量X,Y的边缘密度函数; (2)判断随机变量X,Y是否相互独立; (3)求随机变量Z=X+2Y的分布函数和密度函数.
设(X,Y)的联合密度函数为f(x,y)= (1)求a;(2)求X,Y的边缘密度,并判断其独立性;(3)求.
设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.
设二维随机变量(X,Y)的概率密度为则P{X+Y≤1}=_______.
设(X,Y)的联合分布函数为F(x,y)=则P(max{X,y}>1)=_______.
设随机变量(X,Y)的联合密度为f(x,y)=求: (1)X,Y的边缘密度;(2)P
设随机变量X,Y不相关,X~U(-3,3),Y的密度为根据切比雪夫不等式,有P{|X-Y|
设二维随机变量(X,Y)的联合密度函数为f(x,y)=则a=_______,P(X>Y)=_______.
设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u).
设X,Y为两个随机变量,且P(X≥0,y≥0)=,P(X≥0)=P(Y≥0)=,则P(max{X,Y)≥0)_______.
设随机变量X,Y相互独立,且X~N(0,4),Y的分布律为Y~.则P(X-1-2Y≤4)=_______.
设(X,Y)的联合概率密度为f(x,y)=求:(1)(X,Y)的边缘密度函数;(2)2=2X-Y的密度函数.
设随机变量X在区间(0,1)内服从均匀分布,在X=x(0 (Ⅰ)随机变量X和Y的联合概率密度; (Ⅱ)Y的概率密度; (Ⅲ)概率P{X+Y>1}.
设随机变量X和Y的联合分布是正方形G={(x,y)|1≤x≤3,1≤y≤3}上的均匀分布,试求随机变量U=|X-Y|的概率密度p(u).
设二维随机变量(X,Y)的联合密度为f(x,y)= (1)求c;(2)求X,Y的边缘密度,问X,y是否独立? (3)求Z=max(X,Y)的密度.
设随机变量X,Y相互独立,且X的概率分布为P{X=0)=P{X=2)=,Y的概率密度为 (Ⅰ)求P{Y≤EY}; (Ⅱ)求Z=X+Y的概率密度.
设二维随机变量(X,Y)在区域D上服从均匀分布,其中D://0≤x≤2,0≤y≤2。记(X,Y)的概率密度为f(x,y),则f(1,1)=()
设随机变量X与Y相互独立,X~π(2),Y~π(3),则P{X+Y≤1}=()。
设随机变量X概率密度为p(x),Y=-X,则Y的密度为()。A、-p(y)B、1-p(-y)C、p(-y)D、.p(y)
设随机变量X的概率密度为fX(x),随机变量Y的概率密度为fY(y),则二维随机变量(X、Y)的联合概率密度为fX(x)fY(y)。
单选题设随机变量X的概率密度函数f(x)=1/[π(1+x2)],则Y=3X的概率密度函数为( )。A1/[π(1+y2)]B3/[π(9+y2)]C9/[π(9+y2)]D27/[π(9+y2)]
问答题设随机变量(X,Y)的概率密度为 求:(1)系数k. (2)边缘概率密度fX(x),fY(y). (3)P{X+Y1}.
问答题 随机变量(X,Y)在矩形区域D={(x,y)|a 求:(1)联合概率密度f(x,y). (2)边缘概率密度f X(i),f Y(y). (3)X与Y是否独立?
填空题设X,Y是两个随机变量,且P{X≥0,Y≥0}=3/7,P{X≥0}=P{Y≥0}=4/7,则P{max(X,Y)≥0}=____。