设平面区域D由曲线y=1/x及直线y=0,x=1,x=е2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)的联合密度函数为()。
二维连续性随机变量(X,Y)联合概率密度f(x,y)满足f(x,y)0。()
设二维随机变量(X,Y)服从二维正态分布,则随机变量ζ=X+Y与η=X-Y不相关的充分必要条件为
设二维随机变量(X,Y)的联合密度函数为f(x,y)= (1)求随机变量X,Y的边缘密度函数; (2)判断随机变量X,Y是否相互独立; (3)求随机变量Z=X+2Y的分布函数和密度函数.
设(X,Y)的联合密度函数为f(x,y)= (1)求a;(2)求X,Y的边缘密度,并判断其独立性;(3)求.
设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.
设随机变量X的概率密度为fx(x)=求y=e^x的概率密度FY(y).
设二维随机变量(X,Y)的联合分布律为 则在Y=1的条件下求随机变量X的条件概率分布.
设随机变量X的概率密度函数为fxcx)=,则y=2X的密度函数为(y)=_______.
设二维随机变量(X,Y)的概率密度为则P{X+Y≤1}=_______.
设随机变量(X,Y)的联合密度为f(x,y)=求: (1)X,Y的边缘密度;(2)P
设二维随机变量(X,Y)的联合密度函数为f(x,y)=则a=_______,P(X>Y)=_______.
设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u).
设随机变量(X,Y)的联合密度为f(x,y)=.则P(X>5|Y≤3)_______
设随机变量X~U(0,1),在X=x(0 (1)求X,y的联合密度函数; (2)求y的边缘密度函数.
设(X,Y)的联合概率密度为f(x,y)=求:(1)(X,Y)的边缘密度函数;(2)2=2X-Y的密度函数.
设随机变量X在区间(0,1)内服从均匀分布,在X=x(0 (Ⅰ)随机变量X和Y的联合概率密度; (Ⅱ)Y的概率密度; (Ⅲ)概率P{X+Y>1}.
设随机变量X和Y的联合分布是正方形G={(x,y)|1≤x≤3,1≤y≤3}上的均匀分布,试求随机变量U=|X-Y|的概率密度p(u).
设二维离散型随机变量(X,Y)的概率分布为 (Ⅰ)求P{X=2Y); (Ⅱ)求Cov(X-Y,Y).
设二维随机变量(X,Y)的概率密度为 求常数A及条件概率密度.
设二维随机变量(X,Y)在区域上服从均匀分布,令 (Ⅰ)写出(X,Y)的概率密度; (Ⅱ)请问U与X是否相互独立?并说明理由; (Ⅲ)求Z=U+X的分布函数F(z).
设随机变量(X,Y)服从二维正态分布,其概率密度为f(x,y)=1/2π
设二维随机变量(X,Y)在区域D上服从均匀分布,其中D://0≤x≤2,0≤y≤2。记(X,Y)的概率密度为f(x,y),则f(1,1)=()
设随机变量X概率密度为p(x),Y=-X,则Y的密度为()。A、-p(y)B、1-p(-y)C、p(-y)D、.p(y)
设随机变量X的概率密度为fX(x),随机变量Y的概率密度为fY(y),则二维随机变量(X、Y)的联合概率密度为fX(x)fY(y)。
问答题 随机变量(X,Y)在矩形区域D={(x,y)|a 求:(1)联合概率密度f(x,y). (2)边缘概率密度f X(i),f Y(y). (3)X与Y是否独立?
单选题设随机变量(X,Y)服从二维正态分布,且X与Y不相关,fX(x),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度fX|Y(x|y)为( )。AfX(x)BfY(y)CfX(x)fY(y)DfX(x)/fY(y)