设(X,Y)的联合密度函数为f(x,y)=  (1)求a;(2)求X,Y的边缘密度,并判断其独立性;(3)求.

设(X,Y)的联合密度函数为f(x,y)=
  (1)求a;(2)求X,Y的边缘密度,并判断其独立性;(3)求.


参考解析

解析:

相关考题:

设平面区域D由曲线y=1/x及直线y=0,x=1,x=е2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)的联合密度函数为()。

设X、Y的联合分布函数是F(x,y),则F(+∞,y)等于:() A、0;B、1;C、Y的分布函数;D、Y的密度函数。

已知(X,Y)服从均匀分布,联合概率密度函数为设Z=max{X,Y}求Z的概率密度函数fz(z)

设f(x)、f'(x)为已知的连续函数,则微分方程y'+ f'(x)y = f(x)f'(x)的通解是:

设随机变量X,Y相互独立,它们的分布函数为Fx(x),F(y),则Z=min{X,Y}的分布函数为().

设f(x),f'(x)为已知的连续函数,则微分方程y'十f'(x)y=f(x)f'(x)的通解是:A. y=f(x)+ce-f(x) B. y= f(x)ef(x) -ef(x) +cC. y=f(x)-1+ce-f(x) D. y=f(x)-1+cef(x)

设函数f(x,y)=X2+Y2+xy+3,求f(x,y)的极值点与极值.

设X~U(0,2),y=X^2,求y的概率密度函数.

设二维随机变量(X,Y)的联合密度函数为f(x,y)=  (1)求随机变量X,Y的边缘密度函数;  (2)判断随机变量X,Y是否相互独立;  (3)求随机变量Z=X+2Y的分布函数和密度函数.

设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.

设随机变量X的概率密度函数为fxcx)=,则y=2X的密度函数为(y)=_______.

设(X,Y)的联合分布函数为F(x,y)=则P(max{X,y}>1)=_______.

设随机变量(X,Y)的联合密度为f(x,y)=求:  (1)X,Y的边缘密度;(2)P

设二维随机变量(X,Y)的联合密度函数为f(x,y)=则a=_______,P(X>Y)=_______.

设随机变量(X,Y)的联合密度为f(x,y)=.则P(X>5|Y≤3)_______

设随机变量X~U(0,1),在X=x(0  (1)求X,y的联合密度函数;  (2)求y的边缘密度函数.

设(X,Y)的联合概率密度为f(x,y)=求:(1)(X,Y)的边缘密度函数;(2)2=2X-Y的密度函数.

设二维随机变量(X,Y)的联合密度为f(x,y)=  (1)求c;(2)求X,Y的边缘密度,问X,y是否独立?  (3)求Z=max(X,Y)的密度.

设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为 A.AF^2(x)B.F(x)F(y)C.1-[1-F(x)]^2D.[1-F(x)][1-F(y)]

设函数y=f(x)由方程y^3+xy^2+x^2y+6=0确定,求f(x)的极值.

设f(x,y)为连续函数,

设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为()A、F2(x)B、F(x)F(y)C、1-[1-F(x)]2D、[1-F(x)][1-F(y)]

填空题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=____。

单选题设随机变量X的概率密度函数f(x)=1/[π(1+x2)],则Y=3X的概率密度函数为(  )。A1/[π(1+y2)]B3/[π(9+y2)]C9/[π(9+y2)]D27/[π(9+y2)]

问答题设随机变景X与Y相互独立,且X服从[0,1]上的均匀分布,y服从λ=1的指数分布,  求:(1)X与Y的联合分布函数.  (2)X与y的联合概率密度函数.  (3)P{X≥Y}.

填空题设f(u,v)是二元可微函数,z=f(y/x,x/y),则x∂z/∂x-y∂z/∂y=____。

单选题设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为(  )。AF2(x)BF(x)F(y)C1-[1-F(x)]2D[1-F(x)][1-F(y)]