设X1,2X,…,Xn(n>2)相互独立且都服从N(0,1),Yi=Xi-X(i=1,2,…,n).求: (1)D(Yi)(i=1,2,…,n);(2)Cov(Y1,Yn);(3)P(Yn+Yn≤0).
设X1,2X,…,Xn(n>2)相互独立且都服从N(0,1),Yi=Xi-X(i=1,2,…,n).求:
(1)D(Yi)(i=1,2,…,n);(2)Cov(Y1,Yn);(3)P(Yn+Yn≤0).
(1)D(Yi)(i=1,2,…,n);(2)Cov(Y1,Yn);(3)P(Yn+Yn≤0).
参考解析
解析:
相关考题:
设Xi(i=1,2,…,n)为n个相互独立的随机变量,则下列结论成立的是( )。A.若Xi(i=1,2,…,n)服从正态分布,且分布参数相同,则服从正态分布B.若Xi(i=1,2,…,n)服从指数分布,且λ相同,则服从正态分布C.若Xi(i=1,2,…,n)服从[a,b]上的均匀分布,则服从正态分布D.无论Xi(i=1,2,…,n)服从何种相同的分布,其均值都服从正态分布
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,3^2),Y~N(0,4^2),且X,Y的相 关系数为-,又设Z=(1)求E(Z),D(Z);(2)求;(3)X,Z是否相互独立?为什么?
设随机变量X~N(1,2),Y~N(-1,2),Z~N(0,9)且随机变量X,Y,Z相互独立,已知a(X+Y)2+bZ2~χ2(n)(ab≠O),则a=_______,b=_______,Z=_______.
某工程师为了解一台天平的精度,用该天平对一物体的质量做n次测量,该物体的质量μ是已知的,设n次测量结果X1,X2,…,Xn相互独立且均服从正态分布N(μ,σ^2).该工程师记录的是n次测量的绝对误差Zi=|Xi-μ|(i=1,2,…,n),利用Z1,Z2,…,Zn估计σ. (Ⅰ)求Z1的概率密度; (Ⅱ)利用一阶矩求σ的矩估计量; (Ⅲ)求σ的最大似然估计量.
多选题设随机变量X仅取n个值x1, x2,… xn,其概率函数为P(X=xi)=pi,则( )。A-1≦pi≦1,i=1,2…,nBpi≧0,i=1,2,…,nCp1+p2+…+Pn≦1Dp1+p2+…+Pn=1
单选题设X~N(0,1),则X2服从().Aχ2(n)Bχ2(1)Ct(1)DN(0,1)