设X,Y相互独立,且X~B,Y~N(0,1),令U=max{X,Y},求P{1

设X,Y相互独立,且X~B,Y~N(0,1),令U=max{X,Y},求P{1

参考解析

解析:【解】P(U≤u)=P(max{X,Y}≤u)=P(X≤u,Y≤u)=P(X≤u)P(Y≤u),
P(U≤1.96)=P(X≤1.96)P(Y≤1.96)=[P(X=0)+P(X=1)]P(Y≤1.96)

P(U≤1)=P(X≤1)P(Y≤1)=×Ф(1)=0.4205,
则P(1小于U≤1.96)=P(U≤1.96)-P(U≤1)=0.067.

相关考题:

设X~N(0,1),Y~N(0,1),且X与Y相互独立,则X+Y服从的分布为() A、X+Y服从N(0,1)B、X+Y不服从正态分布C、X+Y~X2(2)D、X+Y也服从正态分布

设随机变量X,Y相互独立,X~U(0,2),Y~E(1),则.P(X+Y>1)等于().

设随机变量X,Y相互独立,且X~N(0,1),Y~N(1,1),则().

设X,Y相互独立,且X~N(1,2),Y~N(0,1),求2=2X-Y+3的密度函数,

设随机变量X,y相互独立,且X~,Y~E(4),令U=X+2Y,求U的概率密度.

设随机变量X,Y,Z相互独立,且X~U[-1,3],Y~B,Z~N(1,3……2),且随机变量U=X+2Y-32+2,则D(U)=_______.

设X~P(1),y~P(2),且X,Y相互独立,则P(X+Y=2)=_______.

设随机变量X,Y相互独立,且X~N,Y~N,Z=|X-Y|,求  E(Z),D(Z).

设X~N(0,1),y=X^2,求y的概率密度函数.

设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求Z=X+Y的密度函数

设随机变量X,y相互独立,且X~P(1),y~P(2),求P(max{X,Y}≠0)及P(min{X,Y}≠0).

设X,y的概率分布为X~,Y~,且P(XY=0)=1.  (1)求(X,Y)的联合分布;(2)X,Y是否独立?

设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求随机变量Z=X+Y的概率密度.

设随机变量X和Y相互独立,且分布函数为Fx(x)=,Fy(y)=,令U=X+Y,则U的分布函数为_______.

设随机变量X~N(μ,σ^2),Y~U[-π,π],X,Y相互独立,令Z=X+Y,求fz(z).

设随机变量X,Y相互独立且都服从标准正态分布,令U=X^2+Y^2.求:  (1)(u);(2)P{U>D(U)|U>E(U)}.

设随机变量X,Y相互独立,且X~N(0,4),Y的分布律为Y~.则P(X-1-2Y≤4)=_______.

设X1,2X,…,Xn(n>2)相互独立且都服从N(0,1),Yi=Xi-X(i=1,2,…,n).求:  (1)D(Yi)(i=1,2,…,n);(2)Cov(Y1,Yn);(3)P(Yn+Yn≤0).

设随机变量X,Y独立同分布,且P(X=i)=,i=1,2,3.  设随机变量U=max{X,Y},V=min{X,Y}.  (1)求二维随机变量(U,V)的联合分布;(2)求Z=UV的分布;  (3)判断U,V是否相互独立?(4)求P(U=V).

设随机变量X,Y相互独立,且X的概率分布为P{X=0)=P{X=2)=,Y的概率密度为  (Ⅰ)求P{Y≤EY};  (Ⅱ)求Z=X+Y的概率密度.

设X,Y是相互独立的随机变量,X~N(2,σ2),Y~N(-3,σ2),且P{|2X+Y-1|≤8.7654}=0.95,则σ=()。

设随机变量X与Y相互独立,且X~N(1,2),Y~N(0,1)。令Z=-Y+2X+3,则D(Z)=()。

设随机变量X与Y相互独立,且X~N(2,22),Y~N(-1,1),则P{|2X+3Y-1|≤9.8}=()。

设随机变量X和Y相互独立,且X~N(0,1),Y~N(1,1),则()A、P{X+Y≤0}=0.5B、P{X+Y≤1}=0.5C、P{X-Y≤0}=0.5D、P{X-Y≤1}=0.5

设随机变量X与Y相互独立,已知P(X≤1)=p,P(Y≤1)=q,则P(max(X,Y)≤1)等于().A、p+qB、pqC、pD、q

问答题设随机变景X与Y相互独立,且X服从[0,1]上的均匀分布,y服从λ=1的指数分布,  求:(1)X与Y的联合分布函数.  (2)X与y的联合概率密度函数.  (3)P{X≥Y}.

单选题设随机变量X与Y相互独立,已知P(X≤1)=p,P(Y≤1)=q,则P(max(X,Y)≤1)等于().Ap+qBpqCpDq