设Xi(i=1,2,…,n)为n个相互独立的随机变量,则下列结论成立的是( )。A.若Xi(i=1,2,…,n)服从正态分布,且分布参数相同,则服从正态分布B.若Xi(i=1,2,…,n)服从指数分布,且λ相同,则服从正态分布C.若Xi(i=1,2,…,n)服从[a,b]上的均匀分布,则服从正态分布D.无论Xi(i=1,2,…,n)服从何种相同的分布,其均值都服从正态分布

设Xi(i=1,2,…,n)为n个相互独立的随机变量,则下列结论成立的是( )。

A.若Xi(i=1,2,…,n)服从正态分布,且分布参数相同,则服从正态分布

B.若Xi(i=1,2,…,n)服从指数分布,且λ相同,则服从正态分布

C.若Xi(i=1,2,…,n)服从[a,b]上的均匀分布,则服从正态分布

D.无论Xi(i=1,2,…,n)服从何种相同的分布,其均值都服从正态分布


相关考题:

设X~N(0,1),Y~N(0,1),且X与Y相互独立,则X+Y服从的分布为() A、X+Y服从N(0,1)B、X+Y不服从正态分布C、X+Y~X2(2)D、X+Y也服从正态分布

一元线性回归的基本假定有( )。A.x是自变量,y是随机变量B.变量y的均值是x的线性函数C.n对数据(xi,yi)相互独立D.给定x,则y服从正态分布,且方差相同E.x是随机变量,y是自变量

X服从标准正态分布(0,1),则Y=1+2X的分布是:() A、N(1,2);B、N(1,4)C、N(2,4);D、N(2,5)。

若随机变量X服从正态分布N(a,b),随机变量Y服从正态分布N(c,d),则X+Y所服从的分布为正态分布。() 此题为判断题(对,错)。

设Xi=(i=1,2,…,16)为正态总体N(0,4)的样本,为样本均值,则的分布可以表示为( )。

设X~N(μ,σ2),σ未知,xi为样本(i=1,2,…,n)。H0:μ≤μ0,H1:μ>μ0,α为显著性水平,则接受域( )。

若收集了n组数据(xi,yi),i=1,2,…,n,并求得Lxx=330,Lxy=168,如Lyy= 88.9,则一元线性回归方程(作图)中的b=( )。A.0.5091B.0.5292C.1.8898D.1.9643

设Xi=(i=1,2,…,16)为正态总体N(0,4)的样本,为样本均值,则的分布可以表示为( )。A.N(0,1/2)B.N(0,4)C.N(0,1/4)D.概率密度为E.N(0,1/8)

设Xi (i=1,2,…,n)为n个相互独立的随机变量,则下列结论成立的是( )。A.若Xi (i=1,2,…,n)服从正态分布,且分布参数相同,则服从正态分布B.若Xi (i=1,2,…,n)服从指数分布,且λ相同,则服从正态分布C.若Xi(i=1,2,…,n)服从[a,b)上的均匀分布,则服从正态分布D.无论Xi (i=1,2,…,n)服从何种分布,其均值都服从正态分布

设随机变量X服从正态分布N(-1,9),则随机变量Y=2-X服从( ).A.正态分布N(3,9)B.均匀分布C.正态分布N(1,9)D.指数分布

设两个相互独立的随机变量X和Y分别服从正态分布N(0,1)和N(1,1),则

36.设Xi(i =1, 2,…,n)为n个相互独立的随机变量,则下列结论成立的是( )。A.若Xi(i =1, 2,…,n)服从正态分布,且分布参数相同,则服从正态分布B.若Xi(i =1, 2,…,n)服从指数分布,且λ相同,则服从正态分布C.若Xi(i =1, 2,…,n)服从[a,b]上的均勻分布,则服从正态分布D.无论Xi(i =1, 2,…,n)服从何种分布,其均值都服从正态分布

设X~N(μ,σ2),σ已知,xi为样本(i= 1,2,…,n)。 H0:μ=μ0 , H1:μ≠μ0 ,则检验统计量指的是( )。

关于中心极限定理,下列说法正确的是( )。A.多个随机变量的平均值(仍然是一个随机变量)服从或近似服从正态分布B. n个相互独立同分布随机变量,其共同分布不为正态分布或未知,但其均值μ和方差σ2都存在,则在n相当大的情况下,样本均值近似服从正态分布N(μ, σ2/n)C.无论什么分布(离散分布或连续分布,正态分布或非正态分布),其样本均值的分布总近似于正态分布D.设n个分布一样的随机变量,假如其共同分布为正态分布N(μ, σ2)则样本均值仍为正态分布,其均值不变仍为μ,方差为 σ2/n

设X1,2X,…,Xn(n>2)相互独立且都服从N(0,1),Yi=Xi-X(i=1,2,…,n).求:  (1)D(Yi)(i=1,2,…,n);(2)Cov(Y1,Yn);(3)P(Yn+Yn≤0).

某工程师为了解一台天平的精度,用该天平对一物体的质量做n次测量,该物体的质量μ是已知的,设n次测量结果X1,X2,…,Xn相互独立且均服从正态分布N(μ,σ^2).该工程师记录的是n次测量的绝对误差Zi=|Xi-μ|(i=1,2,…,n),利用Z1,Z2,…,Zn估计σ.  (Ⅰ)求Z1的概率密度;  (Ⅱ)利用一阶矩求σ的矩估计量;  (Ⅲ)求σ的最大似然估计量.

设随机变量X服从正态分布N(1,2),Y服从泊松分布P(2)。求期望E=(2X—y+3)。

若随机变量X与Y相互独立,且X服从N(1,9),Y服从N(2,6),则X+Y服从()分布。

设X为服从正态分布N(-1,2)的随机变量,则E(2X-1)=()。A、9B、6C、4D、-3

关于中心极限定理的描述正确的是:()。A、对于n个相互独立同分布的随机变量共同服从正态分布,则样本均值又仍为正态分布B、正态样本均值服从分布N(μ,σ2/n)C、设X1,X2,„,Xn为n个相互独立共同分布随机变量,其共同分布不为正态分布或未知,但其均值和方差都存在,则在n相当大时,样本均值近似服从正态分布D、无论共同分布是什么,只要变量个数n相当大时,均值的分布总近似于正态分布

设随机变量X服从正态分布N(-1,9),则随机变量Y=2-X服从().A、正态分布N(3,9)B、均匀分布C、正态分布N(1,9)D、指数分布

行业集中度的计算公式为C.Rn=∑Xi(i=1,2,…….,n)/∑Xi(i=1,2,…….,N),公式中C.Rn表示产业中规模最大的前n位企业的行业集中度,n的取值通常为( )A、100B、50C、20D、4

设X,Y相互独立,且都服从标准正态分布N(0,1),令Z=X2+Y2则Z服从的分布是().A、N(0,2)分布B、单位圆上的均匀分布C、参数为1的瑞利分布D、N(0,1)分布

多选题关于中心极限定理的描述正确的是:()。A对于n个相互独立同分布的随机变量共同服从正态分布,则样本均值又仍为正态分布B正态样本均值服从分布N(μ,σ2/n)C设X1,X2,„,Xn为n个相互独立共同分布随机变量,其共同分布不为正态分布或未知,但其均值和方差都存在,则在n相当大时,样本均值近似服从正态分布D无论共同分布是什么,只要变量个数n相当大时,均值的分布总近似于正态分布

多选题设随机变量X仅取n个值x1, x2,… xn,其概率函数为P(X=xi)=pi,则(  )。A-1≦pi≦1,i=1,2…,nBpi≧0,i=1,2,…,nCp1+p2+…+Pn≦1Dp1+p2+…+Pn=1

单选题设随机变量X服从正态分布N(-1,9),则随机变量Y=2-X服从().A正态分布N(3,9)B均匀分布C正态分布N(1,9)D指数分布

单选题行业集中度的计算公式为C.Rn=∑Xi(i=1,2,…….,n)/∑Xi(i=1,2,…….,N),公式中C.Rn表示产业中规模最大的前n位企业的行业集中度,n的取值通常为( )A100B50C20D4