解非齐次线性方程组

解非齐次线性方程组


参考解析

解析:

相关考题:

若齐次线性方程组中方程的个数小于未知数的个数,则该方程组必有非零解。() 此题为判断题(对,错)。

设n元齐次线性方程组AX=O只有零解,则秩(A)=()。

设α1,α2是非齐次线性方程组Ax=b的解.则A(5α2-4α1)=_________.

非齐次线性方程组任意两个解之差为对应系数的齐次线性方程组的解。()

齐次线性方程组AX=0若有两个不同的解,它就有无穷多个解

若A是m×n矩阵,且m≠n,则当R(A)=n时,非齐次线性方程组AX=b,有唯一解

设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解B.若Ax=0有非零解,则Ax=b有无穷多个解C.若Ax=b有无穷多个解,则Ax=0仅有零解D.若Ax=b有无穷多个解,则Ax=0有非零解

设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在.B.仅含一个非零解向量.C.含有两个线性无关的解向量.D.含有三个线性无关的解向量.

要使齐次线性方程组有非零解,则a应满足(  )。 A. -2<a<1 B. a=1或a=-2 C. a≠-1且a≠-2 D. a>1

求齐次线性方程组的基础解系

解齐次线性方程组:

已知非齐次线性方程组 有3个线性无关的解. (Ⅰ)证明方程组系数矩阵A的秩; (Ⅱ)求的值及方程组的通解

设有齐次线性方程组    试问a为何值时,该方程组有非零解,并求其通解.

问取何值时 非齐次线性方程组, (1)有唯一解 (2)无解 (3)有无穷多个解,并在无穷多个解时,求方程组的通解

已知齐次线性方程组同解,求a,b,c的值.

求出一个齐次线性方程组,使它的基础解系由向量组成

设有齐次线性方程组.试问取何值时,该方程组有非零解,并求出其通解

问:齐次线性方程组有非零解时,a,b必须满足什么条件?

已知齐次线性方程组(1)方程组仅有零解;(2)方程组有非零解,在有非零解时,求此方程组的一个基础解系.

求证:非齐次线性方程组无关。

求齐次线性方程组的全部解(要求用基础解系表示)。

齐次线性方程组的基础解系为( )。

设A为矩阵,都是齐次线性方程组Ax=0的解,则矩阵A为( )。

已知非齐次线性方程组有无限多个解,则t等于().A、-1B、1C、4D、-1或4

设A是4×6矩阵,则齐次线性方程组AX=0解的情况是()。A、无解B、只有零解C、有非零解D、不一定

单选题设A是4×6矩阵,则齐次线性方程组AX=0解的情况是()。A无解B只有零解C有非零解D不一定

单选题已知非齐次线性方程组有无限多个解,则t等于().A-1B1C4D-1或4